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Abstract. Cyber-Physical Systems (CPS) are being widely adopted in critical infrastructures,
such as smart grids, nuclear plants, water systems, transportation systems, manufacturing, and
healthcare services, among others. However, the increasing prevalence of cyberattacks targeting
them raises a growing security concern in the domain. In particular, memory-safety attacks, that
exploit memory-safety vulnerabilities, constitute a major attack vector against real-time control
devices in CPS. Traditional IT countermeasures against such attacks have limitations when applied
to the CPS context: they typically incur in high runtime overheads; which conflicts with real-time
constraints in CPS and they often abort the program when an attack is detected, thus harming
availability of the system, which in turn can potentially result in damage to the physical world.
In this work, we propose to enforce a full-stack memory-safety (covering user-space and kernel-
space attack surfaces) based on secure compiling of PLCs to detect memory-safety attacks in
CPS. Furthermore, to ensure availability, we enforce a resilient mitigation technique that bypasses
illegal memory access instructions at runtime by dynamically instrumenting low-level code. We
empirically measure the computational overhead caused by our approach on two experimental
settings based on real CPS. The experimental results show that our approach effectively and
efficiently detects and mitigates memory-safety attacks in realistic CPS.

Keywords: Critical Infrastructures Security · CPS Security · Software Security · Memory Safety ·
Efficiency · Resilience · Availability

1 Introduction

Cyber-physical systems [48, 31, 32] are being widely adopted in various mission critical infrastructures
including smart grids, water treatment and distribution systems, transportation, nuclear plants, robotics
and manufacturing, among others. Despite their importance in such critical infrastructures, the increas-
ing cyberattacks targeting them poses a growing security concern. One important class of cyberattacks
in CPS are memory-safety attacks [52, 44] that target programmable logic controllers (PLCs).

A typical PLC consists of three main software components – the PLC firmware, the control software
(i.e. the control logic) and the underlying OS hosting the PLC. Since these software components are
commonly implemented in C/C++ languages (for the sake of efficiency), they are susceptible to memory-
safety vulnerabilities, such as buffer overflows, use-after-free errors (dangling pointers), use-after-return
errors, initialization order bugs, and memory leaks. Consequently, a wide-range of these vulnerabilities
are being regularly discovered even in modern PLCs [20, 16, 15, 17, 18, 14, 19, 13] and Linux kernels [38].

These vulnerabilities could lead to runtime crashes, which can severely affect safety- and availability-
critical systems, such as CPS. More importantly, these vulnerabilities can also be exploited by memory-
safety attacks. Memory-safety attacks, such as code-injection [24] and code-reuse [51] attacks, can corrupt
the memory system of a vulnerable program to hijack or subvert its operations. In CPS, these attacks
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can target the PLC’s firmware and control software (user-space) or the underlying OS kernel hosting
the PLC (kernel-space). Therefore, both the runtime crashes and memory-safety attacks are critical
concerns in CPS.

To overcome the runtime crashes and security challenges, a wide-range of countermeasures, often
referred as memory-safety tools, have been developed [47, 30, 34, 35, 36, 22, 50, 23, 6, 21, 29, 1, 54,
53, 26, 4, 37, 12, 41, 25, 43, 28]. However, the hard real-time and availability requirements imposed in
CPS, alongside the use of resource-constrained edge devices, limit the practical applicability of certain
memory-safety tools available. This is because, the high memory-safety overheads (MSO) induced by
certain memory-safety tools compromise the real-time requirements in CPS. Furthermore, the non-
resilient mitigation strategies exerted in certain memory-safety tools (e.g. plainly aborting/restarting
the victim system when a memory-safety attack is detected) compromise availability of the system.
Therefore, the efficiency and mitigation resilience of memory-safety tools are crucial requirements in
CPS that should be met alongside strong security guarantees.
Efficiency – Most memory-safety tools, especially the code-instrumentation ones incur in high runtime
overheads, e.g., RopoCop [23] (240%), CUP [6] (158%), CCured [36] (150%), SoftBoundCETS [34]
(116%), and MemSafe [50] (87%). This high overhead may unacceptably compromise performance of
the CPS. If the CPS real-time constraints are not met, major consequences can follow such as disruption
of the control-loop stability, incorrect control by the use of stale information, availability issues, system
damage (in the worst case), etc. Thus, the trade-off between security and efficiency remains as one of
the main conflicting design challenges in CPS.
Mitigation resilience – Most of the existing memory-safety tools do not have a resilient mitigation
strategy. They are primarily designed to abort or reboot the victim system when a memory-safety
attack or violation is detected, thus leading to system unavailability. Such ineffective mitigation strategies
are not acceptable in systems with stringent availability requirements, such as CPS. Because, system
unavailability in CPS leaves the control system into an unsafe state and leads disruption of the CPS
dynamics, which may result in a complete system failure (cf. Section 2.2). Thus, system availability is
also a critical requirement in CPS.

Therefore, vis-a-vis the real-time and availability requirements (which we particularly associate with
the efficiency and mitigation resilience of the security solutions) are equally critical as the runtime
crashes and security concerns in the CPS environment.

Our approach To address these challenges, we propose a countermeasure called Secure Compiling Of
PLCs in cybEr-physical systems (SCOPE). Inspired by our recent work, CIMA [9], our approach
is based on the intuition of proactively stopping memory-safety violations from happening, thereby
preventing both runtime crashes and memory-safety attacks in the process. To accomplish this, we
follow a compile-time code-instrumentation based approach that offers stronger guarantees in terms of
error coverage and detection accuracy, despite introducing higher performance overheads. To cover the
attack surfaces in user-space and kernel-space, we escalate our solution to a full-stack memory-safety
countermeasure, comprising a user- and kernel-space memory-safety solutions.

After researching over several available tools, we port the popular memory-safety tools, such as Ad-
dressSanitizer(ASan) [47] and Kernel Address Sanitizer (KASan) [30], as a user-space and kernel-space
memory error detector tools, respectively, by fixing their limitations to work in a CPS environment.
We enhance this detection strategy by integrating our recent mitigation work, CIMA[9], that systemat-
ically combines a compile-time code-instrumentation and runtime monitoring techniques to resiliently
mitigate the detected memory-safety attacks.

This work is an extension of our previous works. In brief, it combines our prior memory-safety works
on: 1) a user-space attack detection [7] (disregarding availability attacks (i.e. no mitigation resilience)
and without considering a kernel-space memory-safety); 2) a user-space mitigation resilience [9] (with-
out considering a kernel-space memory-safety); and 3) a kernel- and user-space attack detection [8]
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(disregarding availability attacks). So, in this work, we integrated the three approaches together to form
a full-stack memory safety. Although we previously studied them separately, ultimately they should all
together be part of the secure compilation strategy. It is an open question whether a practical CPS
would tolerate the joint computational overhead induced by the proposed full-stack memory-safety.

Evaluation The effectiveness of the proposed full-stack memory-safety is experimentally evaluated. Our
experiments are based on two realistic CPS testbeds: SWaT (Secure Water Treatment System) [33]
and SecUTS (Secure Urban Transportation System) [55], comprising real-world vendor-supplied PLCs.
However, the vendor’s PLC firmware (both in SWaT and SecUTS) is closed-source, hence we could not
incorporate our memory-safety solutions in these PLCs. To circumvent this challenge, we prototyped
our experimental testbeds, which we call open-SWaT and Open-SecUTS, using open-source PLCs to
mimic the behavior of SWaT and SecUTS, respectively, according to their detailed operational profiles.
Then, we report experiments conducted on Open-SWaT and Open-SecUTS.

A strong memory-safety countermeasure apparently incurs high cost, i.e., performance overhead,
which might not be acceptable in CPS due to the hard real-time and availability requirements im-
posed in these systems. To evaluate the acceptability of such overheads, we briefly modeled the CPS
design constraints, such as the real-time and physical-state resiliency requirements. These models aid
as benchmarks to evaluate tolerability of the performance overheads and resilience of the system dy-
namics in CPS. Subsequently, we evaluated the effectiveness of our full-stack memory-safety solution
on the Open-SWaT and Open-SecUTS testbeds. In particular, we evaluate tolerability of the induced
performance overhead in accordance with the CPS real-time constraints we modeled. Our experimental
results on Open-SWaT and Open-SecUTS reveal that the introduced memory-safety overhead of 91.02%
(for Open-SWaT) and 85.49% (for Open-SecUTS) would not impact the normal operations of SWaT
and SecUTS. Furthermore, our user-space mitigation strategy also meets physical-state resiliency of the
CPS testbeds under test.

In general, our full-stack countermeasure efficiently and successfully prevents memory-safety viola-
tions from happening without compromising availability of the system. To the best of our knowledge,
this is not achieved by any prior work. Although our proposed memory-safety is applicable for any com-
puting system involving C/C++ programs, we particularly focused on the CPS domain in this research.
This is because, unlike the mainstream systems, CPS often imposes conflicting design constraints in-
cluding real-time guarantees and physical-state resiliency – involving its physical dynamics and security.
Note that attacks that manipulate sensor or actuator values at storage or communication levels are out
of our scope, and can be handled via orthogonal approaches, e.g., using physics-based approaches [27],
machine-learning techniques [39], or access-control mechanisms [3, 2].

In sum, the proposed work tackles the problem of quantifying the practical tolerability of enforcing
a strong full-stack memory-safety on realistic CPS with hard real-time constraints and limited computa-
tional power. Furthermore, this work tackles the problem of ensuring availability of critical services and
systems while successfully detecting and mitigating a wide-range of memory-safety attacks.

We make the following contributions: a) The enforced full-stack memory-safety effectively prevents
both runtime crashes (that could arise due to memory-safety violations) and memory-safety attacks in
CPS, both in user-space and kernel-spaces. b) We formally define and model the notions of real-time and
physical-state resiliency constraints, that are crucial in the context of CPS. c) We empirically measure
and quantify tolerability of the induced performance overhead of our full-stack memory-safety based
on the real-time constraints of two realistic CPS systems. d) Our user-space memory-safety ensures
system availability and physical-state resiliency with reasonable performance and storage overheads.
Therefore, it is practically applicable to systems with stringent timing constraints, such as CPS, beyond
the mainstream systems. e) The efficiency and effectiveness of our approach is evaluated on two real-
world CPS testbeds containing vendor-supplied PLCs.
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2 Attacker and system models

This section discusses our attacker model and the CPS design constraints we formally modelled.

2.1 Attacker model

The main objective of memory-safety attacks (e.g. code-injection and code-reuse attacks) is to get a
privileged access or to take control of the vulnerable system. To achieve this, the attacker exploits
memory-safety vulnerabilities, e.g., buffer over/under-flows and dangling pointers, that can be found in
the targeted program. We briefly illustrate the exploitation strategy using a simple C/C++ program
consisting of a buffer overflow vulnerability (cf. Program 1). A relevant memory layout of the program
is provided in Figure 1a, just to simplify the illustration of the exploitation strategy. This includes the
defined buffer address and extended instruction pointer (EIP) of the program.

The vulnerable function, i.e., “gets(buffer)”, allows the attacker to send an input data that is larger
than the allocated buffer size. The attacker can exploit this vulnerability by creating a systematically
tailored input that serves to overwrite the buffer’s boundary, the EIP and other important memory
addresses. In brief, the tailored input consists of the attacker defined memory address (e.g. 0×xy in
Figure 1b) – which will serve for overwriting the EIP, and a malicious code – to be injected into the
program’s address space (in case of code-injection attacks). Figure 1b illustrates the tailored input. As
shown in Figure 1c, the attacker defined address is made to point the starting address of the injected
malicious code (for code-injection attacks) or existing system modules (for code-reuse attacks). The
attack will be then launched by sending the tailored input to the buffer. The exploitation strategies are
briefly illustrated in Figure 2. A detailed account of such exploitation strategies can also be found in
[5, 45].

Program 1: A code snippet containing a simple buffer overflow vulnerability.

1 foo() {
2 char buffer[16];
3 printf(“Insert input: ”);
4 gets(buffer);

5 }

2.2 Modeling CPS design constraints

Unlike traditional IT systems, CPS involves complex and continuous interactions between entities in the
physical and cyber spaces over communication networks. These interactions are accomplished via com-
munications with the physical-world through sensors and actuators and with the digital-world through
PLCs (controllers) and other embedded devices. An abstraction of a typical CPS is illustrated in Fig-
ure 3.

The interactions among CPS entities, such as sensors, PLCs and actuators, is synchronized via
system time. These interactions, unlike in conventional IT systems, are constrained by hard deadlines.
Missing deadlines could result in disruption of the control-loop stability or damage to the physical plant
(in the worst case). Because, such situations could lead the underlying system to run into an unsafe
and unstable states. This is the main reason that makes CPS to be highly delay sensitive and real-time
constrained systems.
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(a) Memory layout with relevant addresses (b) The attacker created tailored input

(c) Diverting control to the injected code (code in-
jection attacks) or system modules (code reuse at-
tacks)

Fig. 1: A high-level illustration of memory-safety attacks exploitation strategies.

In particular, since PLCs form the main control devices in CPS, the real-time requirements are
particularly imposed in these devices to maintain the safety and stability of the control system in CPS.
To be able to formally capture the timing constraints in CPS, we define two crucial notions, namely
real-time constraints and physical-state resiliency, which will serve as metrics to evaluate the efficiency
and resilience of our full-stack memory-safety enforcement, respectively. We formally define and discuss
these notions in the following sections.

Real-time constraints As shown in Figure 4, PLCs undergo a continuous and cyclic process when
issuing control commands to actuators. This process involves three main operations, namely input scan,
PLC logic execution and output update. This cyclic process is often referred as the PLC’s scan cycle.
The overall time it takes to complete the scan cycle (i.e. to execute the three operations) is referred as the
scan time (Ts) of the PLC [11]. To effectively synchronize the interactions and communications among
its various entities, a typical CPS defines an upper-bound scan time to each PLC, called cycle time (Tc).
Meaning, each scan cycle has to be completed within the specified cycle time of the PLC, i.e., Ts ≤ Tc.
We define this requirement as the real-time constraint of the PLC. A typical PLC meets this constraint
by design. However, due to security overheads, such as MSO, PLCs might not meet this constraint.
For example, by hardening the PLC with our memory-safety protection, the scan time increases. This
increase in the scan time is attributed to the MSO. Concretely, the MSO can be computed as follows:

MSO = T̂s − Ts, (1)

where T̂s and Ts are the scan time with and without memory-safe compilation, respectively.
The induced MSO by the memory-safe compilation obviously causes a delay on the PLC operations.

However, it is essential to check whether this MSO still satisfies the real-time constraint imposed by
the PLC. To this end, we compute MSO for – 1) average-case and 2) worst-case scenarios. In brief,
after securely compiling the PLC with our memory-safety, we measure the PLC scan time, i.e. T̂s, for
n different scan cycles. Then, we compute the MSO in average-case (i.e. mean(T̂s)) and worst-case
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Fig. 2: Memory-safety exploitation strategies.

(i.e. max(T̂s)) scenarios. Formally, we say that the MSO is acceptable in average-case if the following
condition is satisfied: ∑n

i=1 T̂s(i)

n
≤ Tc (2)

where T̂s(i) captures the scan time for the i-th measurement after the memory-safe compilation.
Similarly, the MSO is acceptable in the worst-case if the following condition is satisfied:

n
max
i=1

T̂s(i) ≤ Tc (3)

Note that since cyber-physical systems are hard real-time constrained systems, each scan time should
meet the PLC’s real-time requirement. As such, the worst-case scenario should be used to ensure real-
time guarantees in CPS. However, the worst-case MSO (i.e. the highest cycle time obtained out of n

Fig. 3: An abstraction of a typical CPS
[Acronyms: x = state vector, y = sensor measurements, u = control command]
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scan cycles) might not reflect the actual overhead of the enforced memory-safety. This is because, some
scan times could be inflated even due to non-MSO related reasons, e.g. sudden execution interruptions
due to unforeseen reasons. For this reason, it is essential to demonstrate the average MSO as well since
it gives an intuition of the average performance penalties to be paid when enforcing this memory-safety
solution even in other CPS testbeds. Therefore, we demonstrate both the average-case (computed out
of 50,000 scan cycles) and worst-case MSO in this paper.

Fig. 4: The scan cycle of a PLC

Physical-state resiliency As discussed in the preceding sections, the stability of PLCs is crucial in
enforcing the dynamics of a CPS to be compliant with its requirements. The PLCs real-time constraints,
discussed in Section 2.2, play a crucial role to stabilize the PLC operations as well as to properly
synchronize the interactions among various entities in CPS. However, these constraints are mainly
for the cyber-world (where controls and communications take place) and might not clearly reflect the
impact of control delays on the physical-world (where physical processes take place). In this section,
we particularly model the impact of control delays (or PLC downtime, in other words) on the physical
plant in CPS. For example, a PLC issues a control command at the rate of its cycle time (i.e. Tc) and
the respective actuator also receives this command at the same rate. If a control delay happens for an
arbitrary amount of time, say τ , then the actuator will not receive a fresh control command for the
duration of τ . Consequently, the physical dynamics of the CPS will be affected for a total of τ

Tc
scan

cycles.
We note that the duration τ might be arbitrarily large depending on the reason that causes the

control delay. For example, the control delay could happen because of the MSO (cf. Section 2.2) or as
a result of a non-resilient mitigation strategy that typically aborts/restarts the PLC (i.e. causing PLC
downtime) when a memory-safety attack is detected (cf. Section 3.1).

In either case, the scan time of the PLC with the enforced memory-safety (i.e. T̂s) may increase
beyond the cycle time (i.e. Tc). This may affect the dynamics of the physical processes in CPS. In the
worst case, this delay could cause damage to the CPS by violating its upper-bound or lower-bound
physical state (i.e. x) limits of the plant.

For example, let us take the first process in SWaT (discussed in Section 4.1). This process controls
the inflow of water from an external water supply to a raw water tank. PLC1 controls this process by
opening (with “ON” command) and closing (with “OFF” command) a motorized valve, i.e., the actuator,
connected with the inlet pipe to the tank. If the valve is “ON” for an arbitrarily long duration, then the
raw water tank overflows when the water level surpasses the upper-bound limit of the tank. This occurs
due to the control delay τ on PLC1, during which, the control command (i.e. “ON”) computed by PLC1
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may not change. Similarly, if the actuator receives the “OFF” command from PLC1 for an arbitrarily
long duration, then the water tank underflows when the water level goes beyond the lower-bound limit
of the tank. This is because tanks from other processes expect raw water from this underflow tank. The
occurrence of such phenomena could severely affect the system dynamics in CPS.

Here, we quantify the tolerability of the control delay τ , i.e., the length of τ that does not violate
the upper-bound and lower-bound physical state limits of the plant. We define this notion of tolerance
as physical-state resiliency.

The tolerability of τ , in fact, depends on the current physical-state of the plant (e.g. water level,
in case of PLC1 in SWaT) and the last control command issued by the PLC (e.g. “ON” or “OFF”
command). In the following, we will formally define τ and the notion of physical-state resiliency in CPS.

To accurately formulate the control delay τ , we need to consider the following three mutually exclu-
sive scenarios:

1. The PLC is aborted or restarted.
2. The PLC is neither aborted nor restarted and T̂s ≤ Tc. In this case, there will be no observable

impact on the physical dynamics of the CPS. This is because the PLCs, despite having increased
scan time, still meet the real-time constraint Tc. Thus, they are not susceptible to control delays.

3. The PLC is neither aborted nor restarted and T̂s > Tc. In this case, the PLCs will have a control
delay of T̂s − Tc, as the scan time violates the real-time constraint Tc.

Based on the intuitions discussed in the preceding paragraphs, we formally define τ as follows:

τ =


∆, PLC is aborted/restarted

0, T̂s ≤ Tc
T̂s − Tc, T̂s > Tc

(4)

where ∆ captures a non-deterministic threshold on the control delays when the PLC is aborted or
restarted.

To formally model the physical-state resiliency, we will take a control-theoretic approach. For the
sake of simplicity, we will assume that the dynamics of a typical CPS, without considering the noise
and disturbance on the controller, is modeled via a linear-time invariant. This is formally captured as
follows (cf. Figure 3):

xt+1 = Axt +But (5)

yt = Cxt (6)

where t ∈ N captures the index of discretized time domain. xt ∈ Rk is the state vector of the physical
plant at time t, ut ∈ Rm is the control command vector at time t and yt ∈ Rk is the measured output
vector from sensors at time t. A ∈ Rk×k is the state matrix, B ∈ Rk×m is the control matrix and
C ∈ Rk×k is the output matrix.

We now consider a duration τ ∈ R for the control delay. With the control delay τ , we revisit Eq. (5)
and the state estimation is refined as follows:

x′t+1 = Axt +But−1[[t, t+ τ ]] (7)

where x′t+1 ∈ Rk is the estimated state vector at time t+1 and there was a control delay for a maximum
duration τ . The notation ut−1[[t, t + τ ]] captures that the control command ut−1 was active for a time
interval [t, t+ τ ] due to the control delay τ . In Eq. (7), we assume, without loss of generality, that ut−1
is the last control command received from the PLC before the occurrence of the control delay.

To check the tolerance of τ , we need to validate the physical state vector xt at any discretized time
index t. To this end, we first assume an upper-bound ω ∈ Rk and lower-bound θ ∈ Rk thresholds on
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the physical state vector xt. Therefore, to satisfy the physical-state resiliency, xt must not exceed ω nor
subceed θ. Formally, we say that a typical CPS (cf. Figure 3) satisfies physical-state resiliency if and
only if the following condition holds at an arbitrary time index t:

θ ≤ x′t+1 ≤ ω

θ ≤ Axt +But−1[[t, t+ τ ]] ≤ ω (8)

Figure 5 illustrates three representative scenarios to show the consequence of Eq. (8). If the control
delay τ1 = 0, then ut (i.e. control command at time t) is correctly computed and x′t+1 = xt+1. If the
control delay τ2 ∈ (1, 2], then the control command ut will be the same as ut−1. Consequently, x′t+1 is
unlikely to be equal to xt+1. Finally, when the control delay τ3 > 2, the control command vector ut+i
for i ≥ 0 will be the same as ut−1. As a result, the estimated state vectors x′t+j for j ≥ 1 will unlikely
to be identical to xt+j .

t-1 t t+1

𝛕1 = 0 
ut = ut-1 
x’t+1=xt+1

PLC down

2 ≥ 𝛕2 > 1 

ut = ut-1 
x’t+1≠ xt+1

t+2

𝛕3 > 2 

ut+1 = ut = ut-1 
x’t+1≠ xt+1, x’t+2≠ xt+2

Discretized  
time

0 1 2

Fig. 5: Illustrating the impact of control delays in CPS.

3 Secure compiling of PLCs

In this section, we present a high-level discussion of the memory-safety tools we used in our full-stack
memory-safety enforcement.

3.1 ASan: user-space detection

Overview Although several memory-safety tools are available, they might not be practically applicable
in CPS because of various reasons. This includes limitations in error coverage, low detection accuracy,
high performance overheads, ineffective mitigation strategy, and architectural incompatibilities, among
others. After researching over various tools, we chose ASan [47] as our user-space memory error and
attack detector tool because of its high detection accuracy, broader error coverage and relatively low
performance overhead when compared with other code-instrumentation based memory-safety tools [47,
42].

ASan instruments C/C++ programs at compile-time and creates poisoned memory regions, known
as redzones. These redzones are not addressable and any instruction attempting to access them will
be proactively detected as a memory safety violation. The instrumentation of ASan is illustrated in
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Figure 6 and 7. Such an instrumented code can detect numerous memory-safety vulnerabilities, such as
buffer overflows (i.e. stack, heap and global buffer overflows), use-after-free errors (dangling pointers),
use-after-return errors, initialization order bugs, memory leaks, and double free errors.

Porting ASan to CPS Since ASan is specifically designed for the x86 target architectures, it is
incompatible with AVR or ARM based architectures in the CPS environment. In this work, we adapt
ASan for ARM based PLC systems and evaluate its applicability in the context of cyber-physical systems.
PLC instructions as well as firmware of the PLC are compiled and instrumented by a modified ASan to
guarantee a notion of memory-safety when the program is executed at runtime.

Validation The main limitation of ASan is its non-resilient mitigation strategy; it simply aborts the
victim program whenever a memory violation or an attack is detected (cf. Figure 6 and 7). Ultimately,
cyber-physical systems require a notion of security that guarantees correct functioning of the control
system under strong attacker models. However, ASan fails at that as the detection of a memory-safety
violation leads to abortion of the PLC program and may leave the control system in an unsafe state.
This makes ASan inapplicable in systems with stringent availability constraints, such as CPS.

To address this mitigation limitation, we recently implemented CIMA [9] – a resilient mitigation
technique against memory-safety attacks – and integrated it with ASan (see Section 3.2). Thus, CIMA
enhances the capability of ASan to mitigate memory-safety bugs on-the-fly.

3.2 CIMA: user-space mitigation

Overview CIMA [9] is a resilient mitigation strategy we recently implemented to address the mitigation
limitation of ASan. Instead of aborting the victim program upon detection of a memory-safety violation,
CIMA proactively counters memory-safety violations from occurring. This is accomplished by proactively
skipping (i.e. not executing) the illegal memory access instructions , i.e., instructions that attempt to
access memory illegally, at runtime. In such a way, CIMA effectively prevents memory-safety violation
from occurring without aborting/restarting the victim system. This preserves system availability and
also maintains physical-state resiliency in CPS even in the presence of memory-safety attacks.

Detailed methodology To bypass illegal memory accesses, CIMA systematically constructs and ma-
nipulates the compiler-generated control-flow graph (CFG) of the program. CIMA constructs the CFG
at compile-time by instrumenting each memory access instruction of the program. The instrumenta-
tion involves computation of the target instruction Ti for each respective memory access instruction i.
The target instruction Ti is computed as a single successor of the memory access instruction i in the
CFG, which will be determined at runtime. So, the newly constructed CFG will contain each memory
access instruction i and its corresponding target instruction Ti (cf. Figure 6 and 7). In such a fashion,
if instruction i is detected as illegal at runtime, i will be then bypassed and its target instruction Ti is
executed instead, hence preventing the execution of the illegal memory access instruction. If Ti is also
detected as illegal, the successor of Ti will be then executed, and so on. The rest of the execution, nev-
ertheless, continues without interruption. This ensures availability of the program even in the presence
of memory-safety attacks or violations.

Furthermore, it is noteworthy that the construction of the new CFG involves two scenarios depending
on the location of i and Ti in the original CFG.
Scenario 1: When the memory access instruction i and its target instruction Ti are resided in the same
basic-block (say bb). In this case, it is not possible to make a conditional jump to Ti within the same
basic-block bb if i is detected as illegal. Thus, to make the conditional jump possible, the basic block bb
is split to two basic blocks – ibb (containing i) and Tbb (containing Ti). Now, control can jump to Tbb if
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Fig. 6: Construction of the CFG when i and Ti reside in the same basic-block.

Fig. 7: Construction of the CFG when i and Ti reside in different basic-blocks.

instruction i is detected as illegal. The newly constructed CFG in this scenario is illustrated in Figure
6.

Scenario 2: When i and Ti are resided in different basic-blocks. In this case, we do not need to split the
basic-block since i and Ti are resided in their respective basic-blocks in the original CFG. So, control
can simply jump to the target basic-block (i.e. Tbb) when instruction i is detected as illegal. The CFG
construction of this scenario is depicted in Figure 7.

A more discussion of the two scenarios as well as a detailed account of CIMA can be found in [9, 10].

Validation Although CIMA effectively mitigates memory-safety attacks, there exists semantics-preserving
issues as skipping instructions affects the original program semantics. A careful discussion of such issue
is provided in the original paper [9]. From the discussion, there are only a few corner cases (which might
not even happen in a real-world) where CIMA might not be effective (see in[9]). Apart from that, CIMA
does not affect the execution of the program and this is validated experimentally. A detailed discussion
of CIMA’s validation can be found in [9].
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3.3 KASan: kernel-space detection

Overview Nowadays, most PLCs are user-mode applications running on POSIX-like OSs, such as
Linux OS [8]. For instance, Allen Bradley PLC5 uses Microware OS-9 [46]; Siemens SIMATIC[49] uses
Microsoft Windows; Schneider Quantum uses VxWorks [46]; Emerson DeltaV uses VxWorks [46]; and
OpenPLC uses Linux OS [40].

Therefore, in addition to the exploitation threats at user-space, cyberattacks may also exploit
memory-safety vulnerabilities that could be found in the underlying operating systems hosting the
PLCs. In particular, attacks may exceptionally target vulnerabilities in the Linux kernel (as recent
trends also show in CVE [38]). Therefore, the underlying OS kernel of the PLC is another attack surface
for memory-safety attacks targeting CPS.

To address the kernel-space security concern, we ported KASan in CPS by fixing its various archi-
tectural incompatibility issues. KASan [30] is a fast and dynamic memory error detector tool designed
for the Linux kernel.

KASan is also a code-instrumentation based tool and it follows a similar approach with ASan to de-
tect memory-safety violations. However, with the assumption of not to heavily affect performance of the
Linux kernel, KASan is made to cover only a limited (but critical) set of memory-safety vulnerabilities,
such as buffer overflows, double-free errors and use-after-free bugs. Consequently, its runtime overhead
is considerably lower when compared with that of ASan.

KASan also follows a similar mitigation strategy with that of ASan. It automatically aborts the
victim program when a memory violation is detected, which is an ineffective and non-resilient mitigation
strategy as discussed earlier.

Porting KASan in CPS Porting KASan to our CPS setup was not a straightforward task because of
architectural incompatibility and other technical issues. The current version of KASan is designed only
for the x86 64 and ARM64 target architectures [30, 8]. Unfortunately, Raspbian (i.e. the underlying
operating system of Raspberry PI) is a 32-bit OS, and no support for the 64-bit architecture so far.
Hence, the Raspbian kernel (at the time of writing this paper) is based on a 32-bit (i.e. ARM32)
target architecture. For this reason, it is not possible to directly enforce KASan to the Raspbian kernel.
Besides, we also encountered several technical difficulties when the kernel-level building tool (i.e. GCC)
is different from the user-level GCC (which incorporates ASan and CIMA).

To overcome these technical problems, it was essential to build a custom Linux kernel with ARM64
architecture. To accomplish this, first we built a cross-compiler toolchain (using ASan and CIMA enabled
GCC) on a 64-bit Linux OS. Then, we cross-compiled a custom Raspberry PI Linux kernel (with 64-bit
architecture) using our cross-compiler toolchain. Finally, we managed to compile the custom Linux kernel
with KASan (by enabling the KASAN=y compiler switch and other configuration flags). This hardened
Linux kernel can then detect kernel-level memory-safety attacks or violations, such as buffer overflows,
use-after-free bugs and double-free memory errors.

Similar to the cases in ASan and CIMA, our experimental setup has also allowed us to empirically
measure the performance overhead of KASan. Then, we quantify its performance impact and hence
acceptability in the CPS context.

4 Experimental design

The effectiveness of our proposed security measures against memory-safety attacks is experimented on
realistic CPS testbeds. This section presents a brief discussion of the two CPS testbeds used to conduct
our experiments.
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4.1 SWaT

SWaT [33] is a fully operational water purification testbed for research in the design of secure cyber-
physical systems. It produces five gallons/minute of doubly filtered water. In the following, we briefly
discuss the purification process in SWaT and how we reproduce SWaT to conduct our experiments.

Purification process The entire water purification process is carried out by six distinct, yet co-
operative, sub-processes. Each sub-process is controlled by an independent PLC (indexed from PLC1
through PLC6). Specifically, PLC1 controls the first sub-process, i.e., the inflow of water from external
supply to a raw water tank, by opening and closing the motorized valve connected with the inlet pipe
to the tank. PLC2 controls the chemical dosing process, e.g., water chlorination, where appropriate
amount of chlorine and other chemicals are added to the raw water. PLC3 controls the ultrafiltration
(UF) process. PLC4 controls the dechlorination process where any free chlorine is removed from the
water before it is sent to the next stage. PLC5 controls the reverse osmosis (RO) process where the
dechlorinated water is passed through a two-stage RO filtration unit. The filtered water from the RO
unit is sent in the permeate tank, where the recycled water is stored, and the rejected water is sent
to the UF backwash tank. In the final stage, PLC6 controls the cleaning of the membranes in the UF
backwash tank by turning on and off the UF backwash pump. The overall purification process of SWaT
is shown in Figure 8 The overall purification process of SWaT is shown in Figure 8. A detailed account
of SWaT can be found in [9, 33].

Fig. 8: Overview of the water purification process in SWaT.
[Definition of the acronyms: S = Sensor, A = Actuator, T = Tank, P = Process, MV = Motorized Valve,
LIT = Level Indicator Transmitter, FIT = Flow Indicator Transmitter, DPIT = Differential Pressure Indicator

Transmitter]

Open-SWaT SWaT is designed using proprietary PLCs. Hence, it is not possible to directly enforce
our memory-safety since we cannot modify the firmware of these PLCs. To address this problem, we
designed an open testbed, named Open-SWaT.

Open-SWaT [9, 8] is a mini CPS we designed using open-source PLCs [40] by mimicking the features
and operational details of SWaT. For example, it mimics the hardware specifications of the SWaT
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PLCs (e.g. a CPU speed of 200MHz and a user memory of 2MB), a Remote Input/Output (RIO)
terminal (containing 32 digital inputs (DI), 16 digital outputs (DO)), 13 analog inputs (AI), the real-
time constraints, the PLC program (containing 129 instructions), the communication frequencies and
the full SCADA system. A high-level architecture of Open-SWaT is illustrated in Figure 9. A detailed
account of Open-SWaT can also be found in [9].

Fig. 9: Architecture of Open-SWaT

4.2 SecUTS

SecUTS [55] is a CPS testbed designed to secure a Metro SCADA system. A detailed account of SecUTS
testbed can be found in [55, 9].

Unfortunately, this testbed is also based on proprietary PLCs, hence we cannot directly enforce our
full-stack memory-safety to these PLCs. Consequently, we also prototyped Open-SecUTS (by mimicking
the SecUTS testbed) using the OpenPLC controller. It comprises 6 DI (emergency and control buttons)
and 9 DO (tunnel and station lightings, ventilation and alarms). Subsequently, we enforced our full-stack
memory-safety to Open-SecUTS and evaluated its practical applicability in a Metro SCADA system.

5 Evaluation and discussion

In this section, we evaluate and discuss the experimental results of our full-stack memory-safety en-
forcement in CPS. In particular, we evaluated the security guarantee (i.e. the detection and mitigation
accuracy), the efficiency (i.e. tolerability of the overall overhead in CPS), the mitigation resilience and
the memory usage overheads of the full-stack enforcement.

5.1 Security guarantees

In this section, as a sanity check on our full-stack memory-safety enforcement, we evaluate the detection
and mitigation accuracy of ASan, CIMA and KASan over various memory-safety vulnerabilities. As
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discussed in previous sections, ASan and KASan may rarely miss some memory violations, such as
global buffer overflows and use-after-free bugs, if an attacker manages to corrupt regions outside the
redzones. Due to this reason, ASan and KASan could give rare false positives on these violations.
Apart from this, ASan and KASan effectively detects memory-safety violations. CIMA, on the other
hand, accurately mitigates all the memory-safety violations detected by ASan, but only in user-space.
Table 1 summarizes the detection and mitigation coverage of the three tools over various memory-safety
vulnerabilities.

Table 1: Detection and mitigation accuracy of the full-stack memory-safety.

Vulnerabilities
ASan (Detection) CIMA (Mitigation) KASan (Detection)

False positive False negative False positive False negative False positive False negative

Stack buffer overflow No No No No No No

Heap buffer overflow No No No No No No

Global buffer overflow No Rarely* No No No No

Use-after-free bugs No Rarely* No No No No

Use-after-return bugs No No No No Uncovered Uncovered

Initialization order bugs No No No No Uncovered Uncovered

Memory leaks No No No No Partially Partially

Double-free errors No No No No No No

Uninitialized memory
reads

Uncovered Uncovered Uncovered Uncovered Uncovered Uncovered

* The reasons are discussed in Section 5.1 and further details can also be found in the original paper [47].

5.2 Performance

In this section, we discuss the practical tolerability of the overall full-stack memory-safety overhead, i.e.,
ASan + CIMA + KASan (T̂ ′′s ), in CPS. A detailed performance report of our full-stack memory-safety
enforcement, including the overhead contributed by each tool, is depicted in Table 2 (for Open-SWaT)
and Table 3 (for Open-SecUTS). According to the results, T̂ ′′s is 91.02% (for Open-SWaT) and 85.49%
(for Open-SecUTS).

Subsequently, we evaluate tolerability of the full-stack memory-safety overhead both in the average-
case and worst-case scenarios. Essentially, we have checked if the overall overhead satisfies the conditions
defined on Eq. (2) (for average-case scenario) and Eq. (3) (for worst-case scenario).

First, we evaluated tolerability of the overhead in the average-case scenario. For Open-SWaT,
mean(T̂ ′′s ) = 522.39µs (cf. Table 2), and Tc = 10000µs; and for Open-SecUTS, mean(T̂ ′′s ) = 470.91µs
(cf. Table 3), and Tc = 30000µs. Therefore, according to Eq. (2), the overhead is tolerable with a large
magnitude for both SWaT and SecUTS in the average-case scenario (see the tolerability bar in Figure
10a and 10c, respectively).

Similarly, we evaluated tolerability of the full-stack overhead in the worst-case scenario. For Open-
SWaT, max(T̂ ′′s ) = 4342.27µs (cf. Table 2), and Tc = 10000µs; and for Open-SecUTS, max(T̂ ′′s ) =
4124.57µs (cf. Table 3), and Tc = 30000µs. Both overheads satisfy Eq. (3), hence the overall overhead is
tolerable for both SWaT and SecUTS even in the worst-case scenario (see the tolerability bar in Figure
10b and 10d, respectively). That means, the overhead of our full-stack memory-safety largely meets the
real-time constraints of SWaT and SecUTS both in the average-case and worst-case scenarios, while
significantly increasing its security.
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Table 2: MSO of the full-stack memory-safety for the Open-SWaT Testbed.

Operations
Number
of cycles

Nodes
CPU
MHz

Original (Ts) ASan (T̂s) ASan + CIMA (T̂ ′
s) ASan + CIMA + KASan (T̂ ′′

s )
Mean
(in µs)

Max
(in µs)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Input scan 50000 6 200 59.38 788.12 118.44 1132.32 59.06 99.46 122.86 1151.35 63.48 106.9 135.35 1648.48 75.97 127.94

Execution 50000 6 200 69.09 611.82 115.88 720.36 46.79 67.72 118.97 802.18 49.88 72.2 120.39 912.81 53.3 74.25

Output 50000 6 200 145.01 981.09 185.37 1125.45 40.36 27.83 199.89 1213.62 54.88 37.85 266.65 1780.98 121.64 83.88

Total 50000 6 200 273.48 2381.03 419.69 2978.13 146.21 53.46 441.72 3167.15 168.24 61.52 522.39 4342.27 248.91 91.02

Table 3: MSO of the full-stack memory-safety for the Open-SecUTS Testbed.

Operations
Number
of cycles

Nodes
CPU
MHz

Original (Ts) ASan (T̂s) ASan + CIMA (T̂ ′
s) ASan + CIMA + KASan (T̂ ′′

s )
Mean
(in µs)

Max
(in µs)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Input scan 50000 1 200 59.84 739.94 114.88 902.01 55.04 91.98 115.07 906.09 55.23 92.3 120.29 1624.47 60.45 101.02

Execution 50000 1 200 48.56 488.38 91.36 443.61 42.8 88.14 104.41 676.19 55.85 115.01 106.89 827.75 58.33 120.12

Output 50000 1 200 145.47 850.62 175.59 1045.34 30.12 20.71 178.91 924.11 33.44 22.99 243.73 1672.35 98.26 67.55

Total 50000 1 200 253.87 2078.94 381.83 2390.96 127.96 50.4 398.39 2506.39 144.52 56.93 470.91 4124.57 217.04 85.49

5.3 Resilience

As discussed in Section 3.1, ASan simply aborts the victim program when a memory-safety violation
or an attack is detected. Hence, it does not satisfy the physical-state resiliency requirement since the
control delay τ is indefinite. However, the introduction of CIMA overcomes this mitigation limitation of
ASan. To assess the physical-state resiliency of CIMA, we need to check if the control delay τ , caused
by the MSO or the mitigation strategy, satisfies Eq. (8). In the former case, we already showed in
the preceding section that the overall MSO induced by our full-stack memory-safety is tolerable, i.e.,
T̂s ≤ Tc. Hence, the induced MSO does not affect the physical-state resiliency. In the later case, since
CIMA does not abort or restart the PLC when mitigating memory-safety violations or attacks, it does
not render system unavailability. That means, the control delay τ caused by our mitigation strategy
is zero, hence Eq. (8) is satisfied. Therefore, the physical-state resiliency constraint is satisfied for our
user-space memory-safety enforcement.

However, as discussed in Section 3.3, there is no a resilient mitigation strategy for the kernel-space
since KASan simply aborts the victim program upon detection of memory-safety attacks or violations.
As discussed, such mitigation strategy leads to system unavailability and hence not acceptable in CPS.
Therefore, addressing this problem is left as a future work.

5.4 Memory usage overheads

The memory usage overhead of our full-stack memory-safety is also measured and evaluated. Table 4 and
5 summarize the virtual memory, real memory, binary size and shared library usages for the Open-SWaT
and Open-SecUTS testbeds, respectively.

We notice a significant increase in virtual memory usages (11.11× for Open-SWaT and 10.92×
for Open-SecUTS) in our full-stack enforcement. This is mainly due to the large redzones created with
malloc as part of the ASan and KASan approaches. However, the real memory overhead is only 1.4× (for
Open-SWaT) and 1.21× (for Open-SecUTS). We believe these overheads are still acceptable considering
that most PLCs nowadays come with a minimum of 1GB memory size. Moreover, this memory overhead
is an acceptable tradeoff in the light of strong countermeasures provided by our full-stack memory-safety
solution. Finally, we observe that majority of the memory-usage overhead is incurred by ASan while
KASan and CIMA only introduce a minimal and negligible memory usage overheads, respectively.
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(a) The average-case MSO for Open-SWaT (b) The worst-case MSO for Open-SWaT

(c) The average-case MSO for Open-SecUTS (d) The worst-case MSO for Open-SecUTS

Fig. 10: Tolerability of the full-stack MSO for the Open-SWaT and Open-SecUTS testbeds.

6 Related work

Cyber-Physical Systems and Memory Safety Previously, we proposed to study the tolerability of a
secure compilation in the context of CPS [7]. In that work, we consider only memory error detection
at user-space, does not consider mitigation resiliency against availability attacks and has a preliminary
evaluation on a simulated testbed. In our other work [8], we consider both kernel and user space detection,
but without considering any mitigation strategy and also disregarding availability attacks. In our recent
work [9], we study dynamic instrumentation for achieving resilience against availability attacks based
on memory-safety violations, but without detection of kernel-space attacks. In this work, we consider a
full-stack memory safe compilation that is also resilient to memory-safety attacks in user-space.

Generic memory safety countermeasures Softbound [34] and its extension CETS [35] offer a high-level
memory-safety. However, these tools induce a very high runtime overhead (116%), which might not be
tolerable in CPS. Moreover, no mitigation is implemented in Softbound and CETS, hence no protection
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Table 4: Memory usage overheads of the full-stack memory-safety for Open-SWaT.

Category Original
ASan ASan+CIMA ASan+CIMA+KASan

Instrumented Overhead Instrumented Overhead Instrumented Overhead

Virtual memory usage 62.97MB 549.38MB 8.72× 557.5MB 8.85× 699.91MB 11.11×
Real memory usage 8.17MB 10.31MB 1.26× 11.2MB 1.37× 13.26MB 1.40×
Binary size 144KB 316KB 2.19× 324KB 2.25× 324KB 2.25×
Shared library size 3196KB 4288KB 1.34× 4288KB 1.34× 4288KB 1.34×

Table 5: Memory usage overheads of the full-stack memory-safety for Open-SecUTS.

Category Original
ASan ASan+CIMA ASan+CIMA+KASan

Instrumented Overhead Instrumented Overhead Instrumented Overhead

Virtual memory usage 56.37MB 489.29MB 8.68× 490.6MB 8.70× 615.33MB 10.92×
Real memory usage 8.76MB 9.81MB 1.12× 10.21MB 1.17× 10.62MB 1.21×
Binary size 136KB 288KB 2.12× 296KB 2.18× 296 2.18×
Shared library size 3196KB 4288KB 1.34× 4288KB 1.34× 4288 1.34×

against availability attacks. SafeCode[21] is also a compile-time based memory-safety tool that operates
at the source code level. It instruments load and store instructions to prevent illegal memory accesses.
However, SafeCode failed to prevent direct stack overflows toward function pointers and static arrays
defined in many library functions such as fscanf(), sscanf(), sprintf() and snprintf().

Countermeasures based on control-flow integrity (CFI) A number of CFI-based solutions (e.g. [1, 54, 53,
26]) have been developed to prevent execution flow redirection attacks. However, these solutions have
the following limitations in general: (i) determining the required CFG (often via a static analysis) is
very difficult and requires a significant amount of memory; (ii) data-oriented attacks [28], which do not
divert the execution flow, cannot be detected; (iii) finally, these solutions do not implement mitigation
strategies against the attacks. Consequently, the applicability of CFI-based solutions is limited in a CPS
environment.

Memory safety and availability Rinard et al. [43] implemented “failure-oblivious computing” that allows
a vulnerable program to continue its execution even in the presence of memory errors. This is accom-
plished via the following techniques.Systematically fabricated values are returned for invalid memory
reads, and all invalid memory writes are simply discarded. But, this approach has several limitations.
Firstly, providing fabricated values to the invalid memory reads might not be always acceptable since it
could result in an undesirable outcomes to the system. Secondly, the “failure-oblivious computing” ap-
proach is designed only against buffer-overflow vulnerabilities, hence other critical vulnerabilities, such
as dangling pointers and memory leaks, are not covered. Finally, this approach was designed only for
Servers and Desktop computers and its applicability in the context of CPS is not validated.

In summary, to the best of our knowledge, there is no any prior works that develops and evaluates
full-stack memory-safety in the light of hard real-time constraints and physical-state resiliency imposed
in CPS.

7 Conclusion

In this research, we explored the applicability of strong countermeasures against memory-safety attacks
in CPS, covering both the user-space and kernel-space attack surfaces. Moreover, we enforced a resilient
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mitigation strategy with a focus on availability. In particular, to evaluate efficiency of our proposed
full-stack countermeasure, the induced performance overhead (both the average-case and worst-case
overhead) is evaluated against the real-time constraints of the two CPS under test.

As our experimental results revealed, the proposed full-stack countermeasure is efficient and effective
enough in detecting and mitigating memory-safety attacks in a CPS environment. As a compile-time
tool, our full-stack memory-safety enforcement is dependent on the availability of the source code.
Therefore, binary instrumentation with such solutions can be considered as a future work. A resilient
mitigation strategy for the kernel-space is also left as a future work.
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