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ABSTRACT
Industrial control systems (ICS) have beenwidely adopted inmission-
critical infrastructures. However, the increasing prevalence of cy-
berattacks targeting them has been a critical security concern. On
the other hand, the high real-time and availability requirements of
ICS limits the applicability of certain available security solutions
due to the performance overhead they introduce and the system un-
availability they cause. Moreover, scientific metrics (mathematical
models) are not available to evaluate the efficiency and resilience
of security solutions in the ICS context. Hence, in this paper, we
propose ICS-SEA to address the ICS design constraints of Security,
Efficiency, and Availability (SEA). Our ICS-SEA formally models the
real-time constraints and physical-state resiliency quantitatively
based on a typical ICS. We then design two real-world ICS testbeds
and evaluate the efficiency and resilience of a few selected secu-
rity solutions using our defined models. The results show that our
ICS-SEA is effective to evaluate security solutions against the SEA
conflicting design constraints in ICS.
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1 INTRODUCTION
Industrial control systems (ICS) [24] are well emerged engineer-
ing systems where computations and communications are tightly
integrated with physical systems to control and monitor a wide
range of industrial processes. They are complex systems consisting
of multiple interconnected IoT devices such as programmable logic
controllers (PLCs), sensors, actuators, human-machine interface
(HMI), and various communication devices and protocols.

Nowadays, these systems are being widely adopted by various
critical infrastructures, such as smart grids, robotics, transportation,
water distribution systems, healthcare services, manufacturing, and
so on. Due to their criticalness, these systems are also expected to
operate safely, securely, efficiently and in real-time
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However, their significance in such mission-critical infrastruc-
tures makes them to be widely targeted by various types of cyberat-
tacks. The increase in number and diversity of the interconnected
smart devices in ICS also widens the attack surfaces. As such, vari-
ous attack vectors can target ICS at multiple layers. For example,
communication-level attacks [9, 12, 16] may exploit vulnerabilities
on communication channels and may forge or compromise the
integrity of sensor measurements and control commands in transit.
On the other hand, memory-safety attacks [6, 10, 22] could also
exploit memory-safety vulnerabilities (e.g. buffer overflows and
dangling pointers) that could be potentially found in the implemen-
tation of certain ICS systems, e.g., the control software or firmware
of PLCs. These attacks could corrupt memory of vulnerable pro-
grams and hijack or subvert execution flow of certain operations.
Therefore, the safety and security of industrial control systems can-
not be ignored due to its high significance in many critical systems.
Rather, it is a domain that requires urgent and practical security
solutions to protect a variety of critical infrastructures at hand.

However, the hard real-time and availability requirements im-
posed in ICS, alongside the use of resource-constrained computing
devices, limits the practical applicability of certain security solu-
tions available. For example, most cryptographic solutions (espe-
cially asymmetric key cryptosystems [13, 19]) against communication-
level attacks, most memory-safety solutions [4, 17] against memory-
safety attacks, access control mechanisms [2, 3] against unautho-
rized access to critical information, among others, are often consid-
ered to be inefficient or impractical in ICS because of their heavy
performance overheads. Furthermore, most mitigation strategies
against certain cyberattacks often render the system unavailable
for a particular or indefinite period of time. For example, mitigation
strategies against memory-safety attacks are often based on restart-
ing or aborting the vulnerable system upon attack detection [15, 21].
Mitigation strategies against compromised cryptographic keys of-
ten based on revoking keys, isolating nodes or rekeying (which
usually causes some service delay). Such mitigation strategies often
considered as non-resilient in ICS since the system unavailability
for a particular period of time could affect the system dynamics and
control-loop stability in ICS. Thus, security, efficiency and availabil-
ity (SEA) are equally important albeit conflicting design constraints
in ICS.

Although the SEA constraints are very critical in the design
of ICS, security notions and rigorous treatment of efficiency and
availability are not available in the literature. In particular, clear and
precise scientific metrics are not proposed to accurately evaluate
the efficiency and availability (resilience) of security solutions in
ICS (note that availability and resilience might be interchangeably
used throughout this paper). In fact, there are several different
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definitions for efficiency and availability in the literature, but they
are ambiguous and not formally defined to be used in systems
with stringent timing constraints, such as ICS. More specifically,
there are no mathematical models that accurately quantify what
level of overhead or system unavailability (downtime) is tolerable
to maintain the system dynamics and control-loop stability of a
particular ICS.

Traditionally, efficiency of a security solution is evaluated by
benchmarking its overhead with a prior work. Such approach, how-
ever, does not often work in the ICS environment where the tolera-
bility of security overheads or system downtime is characterized
by various dynamic factors, such as the state information of the
physical process at that particular point of time, length of the delay
caused by the overhead or system downtime, and the type of control
command issued on the prior PLC scan cycle, etc.

In this work, we formally model efficiency and availability (re-
silience) constraints in ICS based on the real-time and physical-state
resiliency requirements of a particular ICS system, respectively. In
particular, we follow a control-theoretic approach to quantify the
tolerability of delays caused by performance overheads or down-
time of services due to certainmitigation strategies. Since the timing
constraints can be arisen at various levels in the ICS architecture,
we specifically model the efficiency and availability requirements
to each individual computing node in ICS such as sensors, PLCs
and actuators.

To this end, we design our experimental testbeds based on real-
world ICS systems and evaluate the effectiveness of our proposed
models. In the future, we expect researchers to leverage our models
to evaluate efficiency and resilience of certain security solutions in
industrial control systems. We make the following contributions:

• We define and formally model the notions of real-time con-
straints and physical-state resiliency that are crucial for ICS
and should be met alongside strong security guarantees.

• We evaluate the effectiveness of our models on two real-
world ICS testbeds involving four practical security solu-
tions.

2 BACKGROUND
In this section, we introduce the relevant background information
in industrial control systems. An industrial control system consti-
tutes of complex interactions between entities in the physical-space
and cyber-space over communication networks. Unlike mainstream
IT systems, such complex interactions are accomplished via com-
munication with the physical-world via sensors and with the digital-
world via PLCs (controllers) and other devices. ICS usually impose
hard real-time constraints. The underlying system could run into
an unsafe and unstable state if such hard real-time requirements
are not met. Moreover, the computing devices involved in a typical
ICS are also highly resource-constrained. For instance, the sen-
sors, PLCs and other I/O devices in ICS have very limited memory
and computational power. Generally, a typical ICS comprises the
following components:

• Physical plant: The physical system where the actual pro-
cesses take place.

• Sensors: Devices that are capable of reading or observing
information from the plant or physical processes.

• PLCs: Controller devices that receive sensor inputs and issue
control inputs (commands) to actuators.

• Actuators: Physical entities that are capable of implement-
ing the control commands they received from the PLCs.

• Communication networks: The communication medium
through which packets containing sensor measurements,
control signals (commands), diagnostic information and alarms
transmitted from one ICS component to another.

• SCADA: A software designed formonitoring and controlling
different processes in an ICS. It often comprises an HMI
(human-machine interface) and a historian server. The HMI
is used to display the state information of physical plants
and processes in the ICS. The historian server is used to store
operational data and the history of alarms.

An abstraction of a typical ICS architecture is shown in Figure 1.
In Figure 1, x denotes the physical state of the plant, y captures
the sensor measurements and u denotes the control command com-
puted by the PLC at any given point of time.

Figure 1: Abstraction of an ICS model

3 MODELING THE ICS DESIGN
CONSTRAINTS

Most ICS systems are highly time-critical. The communication be-
tween its different components, such as sensors, controllers (PLCs)
and actuators, is synchronized by system time. Therefore, delay in
these ICS nodes could result in disruption of the control system or
damage to the physical plant. In the following sections, we define
and discuss the notions of real-time constraints and physical-state
resiliency, which are crucial in the design of ICS and will be used
as benchmarks to evaluate the efficiency and resilience of certain
security solutions, respectively.

3.1 Modeling real-time constraints
The overall performance of an ICS can be affected by the perfor-
mance of its individual computing nodes such as PLCs, sensors
and actuators. Sensors could take some computation time (Ty ∈ R)
while measuring or observing the state information of physical
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processes. Similarly, PLCs also take substantial computation time
to issue and update control commands (Tu ∈ R). Actuators could
also take some execution time (Tact ∈ R) to implement the control
commands received from PLCs (this is often negligible unless the
actuator needs to do additional computations, e.g. decrypting the
received control command if it was encrypted by the PLC). There
will also be communication latencies for packets carrying sensor
measurements from sensors to PLCs (Ly ∈ R) and packets carrying
control commands from PLCs to actuators (Lu ∈ R). Therefore,
the overall ICS computation time (TICS ∈ R) can be intuitively
represented with the following formula:

TICS = Ty + Ly +Tu + Lu +Tact (1)
Eq. (1) might be used to assess the overall performance of a typi-

cal ICS and also to determine a real-time constraint for the overall
control loop, accordingly. However, to appropriately synchronize
the communication among the ICS nodes as well as to maintain
the control dynamics in ICS, real-time constraints are also imposed
to each computing node. By design, each ICS node meets their
respective real-time constraints. However, when employing certain
security solutions, the overhead will be attributed to the compu-
tation time of the nodes. Consequently, the introduced overhead
might violate the real-time constraint of each node and the ICS
system, in general. Although the communication latencies are also
critical concerns in ICS, significant latencies are usually a result
of communication-level attacks, such as DoS/DDoS attacks. Such
issues can be addressed by orthogonal means [25, 26, 28, 29], hence
we only focus on the timing constraints at device-level. In the fol-
lowing, we will briefly discuss the real-time constraints imposed in
each ICS node.

3.1.1 Real-time constraints for PLCs. PLCs form the main control
devices and computing nodes of a typical ICS. As such, PLCs often
impose hard real-time constraints to maintain the stability of the
control system in ICS.

As shown in Figure 6, PLCs undergo a cyclic process called
scan cycle. This involves three major operations: input scan, PLC
program (logic) execution and output update. The processing time
it takes to complete these operations is called scan time (Ts ). A
typical ICS defines and sets an upper-bound on time taken by the
PLC scan cycle, called cycle time (Tc ). This means, the scan cycle
must be completed within the duration of the cycle time specified,
i.e., Ts ≤ Tc . We refer this constraint as a real-time constraint of
the PLC. By design, PLCs meet this constraint. However, due to
the additional security overheads introduced to the PLCs (say PO),
PLCs might not satisfy its real-time constraints. As discussed above,
by incorporating a security solution to the PLCs, the scan time
increases. This increase in the scan time will be attributed to the PO.
Concretely, the introduced overhead can be computed as follows:

PO = T̂s −Ts , (2)

where T̂s andTs are scan time of the PLC with and without security
solution, respectively.

It is crucial to check whether the induced PO still satisfies the
real-time constraint imposed to the PLC. To this end, we compute
PO for – 1) average-case and 2) worst-case scenarios. Particularly,
after incorporating a security solution in the PLC, we compute T̂s

for n different measurements and calculate its respective average-
case and worst-case scan time. Formally, we say that the PO is
tolerable (i.e. meeting the real-time constraint) in average-case if
the following condition holds true:∑n

i=1 T̂s (i)

n
≤ Tc (3)

Similarly, PO is acceptable in the worst-case scenario if the follow-
ing condition holds true:

nmax
i=1

T̂s (i) ≤ Tc (4)

where T̂s (i) represents the scan time of the ith measurement after
enforcing security.

3.1.2 Real-time constraints for sensors. As discussed in Section
3.1.1, PLCs are required to issue new control commands in every
cycle time, i.e., in the interval ofTc . Nevertheless, control commands
are issued based on sensor inputs. That means, sensors are required
to feed their measurements to their respective PLCs within the
interval of the PLC cycle time. Therefore, the real-time constraint
of the sensors is also similar to that of their corresponding PLCs,
i.e., Tc .

Similarly, sensors respect their real-time constraints by design.
However, a security solution implemented to them will introduce
an overhead (say SO), which might force the sensors not to meet
their real-time constraints. Formally, we say that the SO is tolerable
if the following condition is satisfied:

T̂y (i) ≤ Tc (5)

where T̂y (i) captures the computation time for the i-th sensor mea-
surement after enforcing security.

3.1.3 Real-time constraints for actuators. Actuators are expected to
immediately implement the control commands received from PLCs.
Since they receive control commands in the interval of the PLCs
cycle time, i.e., Tc , they are also expected to implement it in the
same interval. If they do not take action within the duration of Tc ,
the ICS system dynamics will be affected. Therefore, the real-time
constraint of the actuators is also the same as their respective PLCs,
i.e., Tc . Normally, actuators will meet this constraint by design.
However, a security solution implemented to them will add an
overhead (say AO) which might violate their real-time constraints.

Similarly, AO is tolerable if the following condition holds:

T̂act (i) ≤ Tc (6)

where T̂act (i) captures the computation time of the actuator when
implementing the i-th control command, with security.

3.2 Physical-state resiliency
The real-time constraint we discussed in the preceding section plays
a crucial role in ensuring a smooth and synchronized communi-
cation among the computing nodes in ICS. However, an overhead
that does not respect the real-time constraint of a particular node
might still be acceptable (with respect to the physical dynamics) if
the delay caused by such overhead does not violate the ICS physical
dynamics, i.e., causing damage on the physical plant. Moreover,
violation of the physical dynamics is often associated with system
unavailability (beyond security overhead) for a particular period of
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time due to various reasons, e.g., due to certain mitigation strate-
gies. In the following, we will discuss the notion of physical-state
resiliency which is characterized with the physical dynamics of
the ICS rather than the user-defined real-time constraints. For the
sake of simplifying the presentation, we will focus only on PLCs to
define physical-state resiliency, but it also applies to sensors and
actuators in a similar way.

The stability of ICS controllers (i.e. PLCs in our case) plays a cru-
cial role in enforcing the dynamics of an industrial control system to
be compliant with its requirement. For example, assume that a PLC
issues control commands every Tc cycle and an actuator receives
these commands at the same rate. Therefore, cycle time of the PLC
isTc . If the PLC is down for an arbitrary amount of time say τ (due
to an overhead or the service is terminated for an arbitrary time
as part of attack mitigation strategy), then the actuator will not
receive fresh control commands for the duration τ . Consequently,
the physical dynamics of the respective ICS will be affected for
a total of τ

Tc scan cycles. We note that the duration τ might be
arbitrarily large. For example, an existing memory-safety solution
[21] (cf. Section 5.1), typically aborts the underlying process or
restarts the entire system when a memory-safety attack is detected.
Other solutions, e.g., CIMA [8] (cf. Section 5.2), never aborts the
underlying system. Nevertheless, CIMA induces an overhead to the
scan time of the PLC, as discussed in the preceding section. Conse-
quently, the scan time of PLCs, with CIMA-enabled memory-safety
(i.e. T̂s ), may increase beyond the cycle time (i.e. Tc ). In general, to
accurately formulate τ (i.e. the amount of downtime for a PLC), we
need to consider the following three mutually exclusive scenarios:

(1) The system is aborted or restarted.
(2) The system is neither aborted nor restarted and T̂s ≤ Tc . In

this case, there will be no observable impact on the physical
dynamics of the system. This is because the PLCs, despite
having increased scan time, still meet the real-time constraint
Tc . Thus, they are not susceptible to downtime.

(3) The system is neither aborted nor restarted and T̂s > Tc . In
this scenario, the PLCs will have a downtime of T̂s −Tc , as
the scan time violates the real-time constraint Tc .

Based on the intuitions mentioned in the preceding paragraphs,
we now formally define τ , i.e., the downtime of a PLC as follows:

τ =


∆, system is aborted/restarted
0, T̂s ≤ Tc

T̂s −Tc , T̂s > Tc

(7)

where ∆ captures a non-deterministic threshold on the downtime
of PLCs when the underlying system is aborted or restarted.

Example. As an example, let us consider the first process in
SWaT (discussed in Section 4.1). This process controls the inflow
of water from an external water supply to a raw water tank. PLC1
controls this process by opening (with “ON” command) and closing
(with “OFF” command) a motorized valve, i.e., the actuator, con-
nected with the inlet pipe to the tank. If the valve is “ON” for an
arbitrarily long duration, then the raw water tank might overflow,
often causing a severe damage to the system. This might occur due
to the PLC1 downtime τ , during which, the control command (i.e.
“ON”) computed by PLC1 may not change. Similarly, if the actuator

receives the command “OFF” from PLC1 for an arbitrarily long
duration, then the water tank may underflow. Such a phenomenon
will still affect the system dynamics. This is because tanks from
other processes may expect raw water from this underflow tank. In
the context of SWaT, the tolerability of PLC1 downtime τ (cf. Eq. (7))
depends on the physical state of the water tank (i.e. water level) and
the computed control commands (i.e. ON or OFF) by PLC1. In the
next section, we will formally introduce this notion of tolerance, as
termed physical-state resiliency, for a typical ICS.

To formally model the physical-state resiliency, we will take a
control-theoretic approach. For the sake of simplifying the presen-
tation, we will assume that the process dynamics of a typical ICS,
without considering the noise and disturbance on the controller, is
modeled via a linear-time invariant. This is formally captured as
follows (cf. Figure 1):

xt+1 = Axt + But (8)

yt = Cxt (9)

where t ∈ N captures the index of discretized time domain, xt ∈ Rk
is the state vector of the physical plant at time t , ut ∈ Rm is the
control command vector at time t and yt ∈ Rk is the measured
output vector from sensors at time t . A ∈ Rk×k is the state matrix,
B ∈ Rk×m is the control matrix and C ∈ Rk×k is the output matrix.

We now consider a duration τ ∈ R for the PLC downtime. To
check the tolerance of τ , we need to validate the physical state
vector xt at any discretized time index t . To this end, we first assume
an upper-bound ω ∈ Rk on the physical state vector xt at an
arbitrary time t . Therefore, for satisfying physical state resiliency,
xt must not exceed the threshold ω. In a similar fashion, we define
a lower-bound θ ∈ Rk on the physical state vector xt .

With the PLC downtime τ , we revisit Eq. (8) and the state esti-
mation is refined as follows:

x ′t+1 = Axt + But−1[[t , t + τ ]] (10)

where x ′t+1 ∈ Rk is the estimated state vector at time t + 1 and
the PLCs were down for a maximum duration τ . The notation
ut−1[[t , t + τ ]] captures that the control command ut−1 was active
on the actuator for a time interval [t , t+τ ] due to the PLC downtime.
In Eq. (10), we assume, without loss of generality, that ut−1 is the
last control command received from the PLC before its downtime.

Given the foundation introduced in the preceding paragraphs, we
say that a typical ICS (cf. Figure 1) satisfies physical-state resiliency
if and only if the following condition holds at an arbitrary time
index t :

θ ≤ x ′t+1 ≤ ω

θ ≤ Axt + But−1[[t , t + τ ]] ≤ ω (11)

Figure 2 illustrates three representative scenarios to show the
consequence of Eq. (11). If the downtime τ1 = 0, thenut (i.e. control
command at time t ) is correctly computed and x ′t+1 = xt+1. If the
downtime τ2 ∈ (1, 2], then the control commandut will be the same
as ut−1. Consequently, x ′t+1 is unlikely to be equal to xt+1. Finally,
when downtime τ3 > 2, the control command vector ut+i for i ≥ 0
will be the same as ut−1. As a result, the estimated state vectors
x ′t+j for j ≥ 1 will unlikely to be identical to xt+j .
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t-1 t t+1
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x’t+1≠ xt+1, x’t+2≠ xt+2

Discretized  
time

0 1 2

Figure 2: Illustrating the impact of PLC downtime

4 EXPERIMENTAL DESIGN
4.1 SWaT
SWaT [14] is a fully operational water purification testbed for re-
search in the design of secure cyber-physical systems. It produces
five gallons/minute of doubly filtered water. In the following, we
discuss some salient features and design considerations of SWaT.

4.1.1 Purification process. The entire water purification process is
carried out by six distinct, yet co-operative, sub-processes. Each sub-
process is controlled by an independent PLC (indexed from PLC1
through PLC6). Specifically, PLC1 controls the first sub-process,
i.e., the inflow of water from external supply to a raw water tank,
by opening and closing the motorized valve connected with the
inlet pipe to the tank. PLC2 controls the chemical dosing process,
e.g., water chlorination, where appropriate amount of chlorine
and other chemicals are added to the raw water. PLC3 controls
the ultrafiltration (UF) process. PLC4 controls the dechlorination
process where any free chlorine is removed from the water before
it is sent to the next stage. PLC5 controls the reverse osmosis (RO)
process where the dechlorinated water is passed through a two-
stage RO filtration unit. The filtered water from the RO unit is sent
in the permeate tank, where the recycled water is stored, and the
rejected water is sent to the UF backwash tank. In the final stage,
PLC6 controls the cleaning of the membranes in the UF backwash
tank by turning on and off the UF backwash pump. The overall
purification process of SWaT is shown in Figure 3.

4.1.2 Components and specifications. The design of SWaT com-
prises the following components and specifications:

• Controllers (PLCs): six redundancy real-world PLCs (Allen
Bradley PLCs) are used to control the entire water purifica-
tion process. The PLCs communicate one another or with the
SCADA system through EtherNet/IP or common industrial
protocol (CIP).

• Remote input/output (RIO): SWaT also consists of remote
input/output terminals containing digital inputs (DI), digital
outputs (DO) and analog inputs (AI) for each PLC. The RIO of
SWaT consists of 32 DI (water level and pressure switches),
13 AI (water pressure, flow rate and water level sensors), and
16 DO (actuators such as motorized valves and pumps).

• PLC program: SWaT has a complex PLC program (control
software) written in ladder logic. It comprises various instruc-
tions such as boolean operators, arithmetic operators, com-
parison operators, conditional statements, counters, timers,
contacts, and coils (the full list is provided in Table 1). The
most complex PLC of SWaT (i.e. PLC2) has a PLC program
containing 129 instructions.

• SCADA system: an HMI is mounted to SWaT to provide
users with a local system supervisory, control and moni-
toring. It also displays state information of plants, sensors,
actuators and operational status of PLCs to users.

• Operation management: consisting of historian server (to
store operational data, various events and alarm histories)
and engineering workstation (designed to provide all neces-
sary control graphics).

• Real-time constraint: the real-time constraint, i.e., cycle
time, of SWaT is 10ms. The notion of cycle time and real-
time constraint (in the ICS context) is briefly presented in
Section 3.

• Communication frequency: the PLCs in SWaT communi-
cate one another and also with the HMI depending on certain
operational conditions. Considering the most complex PLC
(with 129 instructions), it sends as many as 382 packets per
second to its most active peer or as few as three packets per
second to another peer. Considering connections with all
devices in SWaT, we estimate that the most complex PLC has
a send over receive request ratio of 1000 packets per second.

Concurrently, SWaT is based on closed-source and proprietary
Allen Bradely PLCs. Hence, it is not possible to directly modify the
firmware of these PLCs and to enforce memory-safety solutions.
To alleviate this problem in our experimental evaluation, an open
platform, named Open-SWaT, was designed.

4.2 Open-SWaT
Open-SWaT is a mini ICS we designed using OpenPLC controller
[18] – an open source PLC designed for industrial control and cyber-
physical systems. Figure 4 shows a high-level architecture of the
design of Open-SWaT. With Open-SWaT, we reproduce features
and operational behaviours of SWaT. In particular, we reproduce
the main factors that have substantial effect on the scan time of
PLCs. Some salient features of the Open-SWaT design are discussed
as follows.

(1) PLCs: The PLCs of Open-SWaT are designed using Open-
PLC controller that is hosted on a Raspberry PI device and
runs on Linux operating system. To replicate the hardware
specifications of the PLCs in SWaT, we configured 200MHz
fixed CPU frequency and 2Mb user memory for the PLCs
used in Open-SWaT.

(2) Remote Input/Output (RIO): ArduinoMega has been used
as the RIO terminal in Open-SWaT. It has an AVR-based
processor with a clock rate of 16MHz. It comprises 86 I/O
pins where different I/O devices can be directly connected to
them. To replicate the number of input and outputs in SWaT,
we used 32 digital inputs (DI) (switches, push-buttons and
scripts), 13 analog inputs (AI) (ultrasonic and temperature
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Figure 3: Overview of the water purification process of SWaT [1]
Definition of the acronyms: S = Sensor, A = Actuator, T = Tank, P = Process, MV = Motorized Valve, LIT = Level Indicator
Transmitter, FIT = Flow Indicator Transmitter, DPIT = Differential Pressure Indicator Transmitter.

sensors) and 16 digital outputs (DO) (light emitter diodes or
LEDs, in short).

(3) PLC program: We wrote a control software (control logic)
using ladder logic. It is designed to have similar complexity
with the control logic in SWaT. A sample of the logic diagram
is depicted in Figure 5. The control program consists of sev-
eral types of instructions such as 1) logical: AND, OR, NOT,
SR (set-reset latch); 2) arithmetic: addition (ADD), multipli-
cation (MUL); 3) comparisons: equal-to (EQ), greater-than
(GT), less-than (LT), less-than-or-equal (LE); 4) counters: up-
counter (CTU), turn-on timer (TON), turn-off timer (TOF);
5) contacts: normally-open (NO) and normally-closed (NC);
and 6) coils: normally-open (NO) and normally-closed (NC).
The overall control program consists of 129 instructions in
total; details are shown on Table 1.

(4) Communication frequency: The communication archi-
tecture of Open-SWaT (as illustrated in Figure 4) consists of
analogous communicating components with that of SWaT.
Open-SWaT uses both types of modbus protocols – mod-
bus TCP (for wired or wireless communication) and modbus
RTU (for serial communication). The communication among
PLCs is via modbus TCP or modbus RTU whereas the com-
munication between PLCs and the SCADA system is via
modbus TCP. Frequency of communication among PLCs and
the SCADA system is similar to that in SWaT. The commu-
nication between PLCs and Arduino is via the USB serial
communication. The communication frequency between Ar-
duino and sensors is 100Hz.

(5) Real-time constraint: Since the cycle-time (real-time con-
straint) of SWaT is 10ms, we also set 10ms cycle time to each
PLC in Open-SWaT.

(6) SCADA system: We use ScadaBR [20], a full SCADA system
consisting of web-based HMI, for Open-SWaT.

Figure 4: Architecture of Open-SWaT

4.3 SecUTS
The Secure Urban Transportation System (SecUTS) is a ICS testbed
designed to research on the security of a Metro SCADA system.
The Metro SCADA system [30] comprises an Integrated Supervisory
Control System (ISCS) and a train signaling system. ISCS integrates
localized and centralized control and supervision of mechanical
and electrical subsystems located at remote tunnels, depots, power
substations and passenger stations. The entire Metro system can be
remotely communicated, monitored, and controlled from the oper-
ation control center via the communication network. On the other
hand, the signaling system facilitates communications between
train-borne and track-side controllers. It also controls track-side
equipments and train position localization. Modbus is used as a
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Figure 5: Sample PLC program in ladder diagram

Table 1: Complexity of the SWaT PLC program

Instruction(s) Type count
AND Logical 17
OR Logical 14
NOT Logical 5
SR Logical 1
ADD Arithmetic 1
MUL Arithmetic 2
EQ , GT Comparison 6
LT , LE Comparison 4
TON Timers 3
TOF Timers 9
CTU Counters 1
SEL, MAX Selection 2
NO Contacts 38
NC Contacts 3
NO Coils 21
NC Coils 2
Total 129

communication protocol among the devices in the ISCS. A detailed
account of the Metro SCADA can be found in [30].

The SecUTS testbed provides facilities to examine several types
of cyber attacks, such asmessage replay, forgedmessage andmemory-
safety attacks, in the ISCS system and enforce proper countermea-
sures against such attacks. However, the SecUTS testbed is also
based on closed-source proprietary Siemens PLCs, hence we cannot
directly enforce security solutions to these PLCs. Consequently, we
similarly designed Open-SecUTS testbed (by mimicking SecUTS)
using OpenPLC controller. It consists of 6 DI (emergency and con-
trol buttons) and 9 DO (tunnel and station lightings, ventilation

Figure 6: The scan cycle of a PLC

and alarms). The control system in SecUTS is less delay sensitive
and its cycle time is 30ms.

5 THE SECURITY SOLUTIONS UNDER TEST
To assess the practicality and effectiveness of our proposed mod-
els, we evaluate the efficiency and resilience of certain security
solutions using the proposed models. To this end, we choose four
security solutions, comprising twomemory-safety and two cryptog-
raphy solutions. Our choice is motivated by the heavy performance
overhead often introduce bymemory-safety and cryptographic solu-
tions. In addition, we were also interested to involve different levels
of security solutions in the test. As such, we choose system-level (i.e.
memory-safety) and communication-level (i.e. cryptography) secu-
rity solutions. In the following, we provide a high-level description
of the security solutions we choose for the test.

5.1 ASan
AddressSanitizer (ASan) [21] is a compile-time code instrumen-
tation memory-safety tool. It inserts memory-safety checks into
the program code at compile-time, and it detects memory-safety
violations at runtime. ASan instruments C/C++ programs at com-
pile time. The instrumented program will then contain additional
ASan libraries, which are checked to detect possible memory vi-
olation at runtime. Such an instrumented code can detect buffer
overflows/underflows, use-after-free errors (dangling pointers, use-
after-return errors, initialization order bugs and memory leaks. As
a mitigation strategy, ASan simply aborts the system whenever a
memory-safety violation or an attack is detected, which renders
the system unavailable for an indefinite period of time.

Since ASan was primarily designed for x86 architectures, it has
compatibility issues with ARM-based architectures. Thus, for the
purpose of this experiment, we adapted ASan for ARM-based ar-
chitecture in our Open-SWaT testbed. We empirically measured its
run-time overheads and evaluate its efficiency and resilience in a
realistic ICS environment (cf. Section 6).

5.2 CIMA
CIMA (Countering Illegal Memory Accesses) [8] is a resilient miti-
gation strategy we recently developed against memory-safety at-
tacks. It is developed on top of ASan aiming to address the miti-
gation limitation of ASan. CIMA mitigates memory-safety attacks
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by proactively bypassing illegal memory access instructions, i.e.,
instructions that attempt to access memory illegally. It is based on
stopping an attack before the attack actually exploit the vulnerabil-
ity. CIMA never aborts the vulnerable program when mitigating
memory-safety violations, hence favoring availability of the system.

5.3 2FA
2FA (two-factor authentication) [11] is a secure communication
protocol based on two-factor authentication developed for a Metro
Control system. In this protocol, historical data from a server is
used as a second factor, in addition to a secret key, to authenticate
a server communicating with the controller (PLC).

This protocol was tested in the SecUTS (cf. Section 4.3) testbed
and its performance overhead was measured. We evaluated its
efficiency and resilience using our proposed models (cf. Section 6).

5.4 LCDA
LCDA (legacy-compliant data authentication) [5] is a cryptographic
authentication method developed for an industrial control system.
The main goal is to verify authenticity of communication between
PLCs in ICS and to assess the efficiency of such solutions in resource-
constrained legacy systems. In this work, the authors benchmarked
symmetric and asymmetric signature algorithms for a variety of
hardware platforms. This solution was experimented on the SWaT
testbed (cf. Section 4.1).

6 ANALYSIS AND EVALUATION
In this section, we discuss the evaluation of the selected security
solutions using our proposed models on the Open-SWaT and Open-
SecUTS testbeds. In particular, we evaluate the efficiency – tolerabil-
ity of the runtime overheads introduced to each security solution,
and the resilience – capability of the security solutions to ensure sys-
tem availability and maintain physical-state resiliency in ICS even
in the presence of cyberattacks. However, evaluating the security
guarantee of these security solutions, e.g., detection and mitigation
accuracy, is out of the scope of this work.

6.1 Efficiency
6.1.1 ASan and CIMA. With our ICS environment integrated in
the Open-SWaT and Open-SecUTS, the average memory-safety
overhead (MSO) induced by ASan is 53.46% and 50.4%, respectively.
Additionally, CIMA induces 8.06% and 6.53% runtime overheads
on Open-SWaT and Open-SecUTS, respectively. Thus, the overall
runtime overhead of the combined security measure is 61.52% (for
Open-SWaT) and 56.93% (for Open-SecUTS). A more detailed per-
formance report for ASan and CIMA, including the performance
overhead of each PLC operation in both testbeds, is illustrated on
Table 2 and 3.

It is crucial to check whether the induced overhead by ASan
and CIMA (T̂s ) is acceptable in the ICS environment. To this end,
we evaluate if this overhead respects the real-time constraints of
SWaT and SecUTS. For instance, consider the tolerability in average-
case scenario. We observe that this security measure satisfies the
condition of tolerability, as defined in Eq. (3). In particular, from
Table 2, mean(T̂s ) = 441.72µs, and Tc = 10ms; and from Table
3,mean(T̂s ) = 398.39µs, and Tc = 30ms. Consequently, Eq. (3) is

satisfied and the overhead induced by ASan and CIMA is both
tolerable in SWaT and SecUTS testbeds.

Similarly, considering the worst-case scenario, we evaluate if
Eq. (4) is satisfied. From Table 2,max(T̂s ) = 3167.15µs, and Tc =
10ms; and from Table 3,max(T̂s ) = 2506.39µs, and Tc = 30ms. It is
still tolerable, thus the proposed security measure satisfies SWaT’s
and SecUTS’s real-time constraints in both scenarios. Therefore,
despite high security guarantees provided by ASan and CIMA, its
overhead is still tolerable in a ICS environment.

6.1.2 2FA. The 2FA protocol introduces an overhead on the PLC
ranging from 18ms to 25ms when tested on different number of
historical data. This overhead is tolerable since the PLC cycle time
(i.e. Tc ) of the SecUTS testbed is 30ms.

6.1.3 LCDA. The performance overhead of LCDA was measured
using different hardware platforms and cryptographic algorithms.
The overhead varies when using different combinations of hardware
platforms and cryptographic protocols over various packet sizes.
As such, the overhead was tolerable at one time and it was not at
another time.

6.2 Resilience
6.2.1 ASan. As discussed, ASan simply aborts the vulnerable pro-
gram when a memory-safety attack is detected, hence it renders
system unavailability. That means, τ = ∞, hence ASan does not
satisfy the physical-state resiliency requirement in ICS.

6.2.2 CIMA. In Section 6.1.1, we showed that the overall overhead
is tolerable, i.e., T̂s ≤ Tc . Hence, the additional overhead induced by
CIMA does not affect the physical-state resiliency. Added to the fact
is that the availability of SWaT and SecUTS is also ensured by CIMA
since it never aborts the system or leads to PLC downtime when
mitigating memory-safety attacks. That means, the downtime, i.e.,
τ , is zero, hence Eq. (11) is satisfied. This then ensures physical-state
resiliency.

6.2.3 2FA. As discussed in Section 6.1.2, the overhead of 2FA is
tolerable with respect to the real-time constraint of SecUTS. As
such, the introduced overhead does not affect the physical-state
resiliency of SecUTS. The 2FA protocol does not also render system
unavailability since it is just an authentication protocol and does
not involve any mitigation strategy. As such, the system downtime
(τ ) is zero. Therefore, the 2FA security solution meets the physical-
state resiliency requirement of SecUTS.

6.2.4 LCDA. LCDA is also an authentication mechanism and does
not render the system unavailable. While the performance overhead
in some platforms is in acceptable range, it is very high other plat-
forms. As such, the real-time constraint as well as the physical-state
resiliency of SWaT is not met in some combinations of hardware
platforms and cryptographic protocols.

7 RELATEDWORK
Since the conflict between security, efficiency and resilience has
been critical in the context of ICS, the need to define new security
notions and a rigorous treatment of efficiency and availability is
high. However, to the best of our knowledge, there is no prior work
that clearly defines and models these critical design conflicts in ICS.
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Table 2: Memory-safety overheads for the Open-SWaT Testbed

Operations Number
of cycles

Network
devices

CPU speed
(in MHz)

Original (Ts ) ASan ASan + CIMA (T̂s )
Mean
(in µs)

Max
(in µs)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Input scan 50000 6 200 59.38 788.12 118.44 1132.32 59.09 99.46 122.86 1151.35 63.48 106.9
Program exec. 50000 6 200 69.09 611.82 115.88 720.36 46.79 67.72 118.97 802.18 49.88 72.2
Output update 50000 6 200 145.01 981.09 185.37 1125.45 40.36 27.83 199.89 1213.62 54.88 37.85
Full scan time 50000 6 200 273.48 2381.03 419.69 2978.13 146.21 53.46 441.72 3167.15 168.24 61.52

Table 3: Memory-safety overheads for the Open-SecUTS Testbed

Operations Number
of cycles

Network
devices

CPU speed
(in MHz)

Original (Ts ) ASan ASan + CIMA (T̂s )
Mean
(in µs)

Max
(in µs)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Mean
(in µs)

Max
(in µs)

MSO
(in µs)

MSO
(in %)

Input scan 50000 1 200 59.84 739.94 114.88 902.01 55.04 91.98 115.07 906.09 55.23 92.3
Program exec. 50000 1 200 48.56 488.38 91.36 443.61 42.8 88.14 104.41 676.19 55.85 115.01
Output update 50000 1 200 145.47 850.62 175.59 1045.34 30.12 20.71 178.91 924.11 33.44 22.99
Full scan time 50000 1 200 253.87 2078.94 381.83 2390.96 127.96 50.4 398.39 2506.39 144.52 56.93

Figure 7: Tolerability of the worst-case overhead for Open-
SWaT testbed

Zhang et al. [27] tried to model the trade-off between privacy
and performance in a cyber-physical system (CPS) context. While
they leveraged the differential privacy approach to preserve privacy
of CPS, they also analyzed and modeled its performance overhead.
They proposed an approach that optimizes the system performance
while preserving privacy of CPS. This work is interesting from point
of view of analyzing performance overheads in CPS, but did not
provide any analysis with respect to the efficiency and resilience
constraints in CPS or ICS.

Stefanov et al. [23] proposed a new model and platform for the
SCADA system of an integrated CPS. With the proposed platform,
they modeled real-time supervision of CPS, performance of CPS
based on communication latencies, and also he assessed commu-
nication and cyber security of the SCADA system. He followed
a generic approach to assess and control various aspects of the

Figure 8: Tolerability of the worst-case overhead for Open-
SecUTS testbed

CPS. However, he did not specifically work on the efficiency and
resilience requirements in ICS or CPS.

Chekole et al. [6, 7] tried to empirically evaluate the tolerability
of memory-safety overheads in a CPS environment, but did not
model the real-time and physical-state resiliency constraints using
the dynamic factors involved in the ICS system dynamics.

Castellanos et al. [5] empirically evaluated acceptability of an
overhead caused by a cryptographic solution in an ICS environment.
However, his analysis only focuses on the number of packets trans-
mitted when using different hardware platforms and cryptographic
algorithms.

8 CONCLUSION
In industrial control systems, security remains a critical concern.
However, the hard real-time and availability requirements, which

9



ICSS, December 10, 2019, San Juan, PR, USA Eyasu Getahun Chekole and Guo Huaqun

are often conflicting with security solutions, are also equally critical.
As such, balancing these conflicting design constraints will remain
a critical challenge in the design of industrial control systems.

In this paper, we formally model the efficiency (i.e. the real-time)
and availability (i.e. the resilience) constraints imposed in a typical
industrial control system. Using these models, we evaluate the
efficiency and resilience of some security solutions on two realistic
ICS testbeds. We also expect other researchers to use our models
as benchmarks when evaluating efficiency and resilience of their
security solutions in ICS.

From a conceptual point of view, this work provides a fresh
outlook over the critical design constraints in industrial control sys-
tems and it might inspire the community to propose more accurate
models in this regard. In future, we plan to extend this work by con-
sidering further factors in the ICS system dynamics. We also intend
to enhance the proposed efficiency and resilience models by sys-
tematically correlating and consolidating the specific requirements
at each individual node level.
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