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Abstract. Memory-safety attacks are one of the most critical threats
against Cyber-Physical Systems (CPS). As opposed to mainstream sys-
tems, CPS often impose stringent timing constraints. Given such timing
constraints, how can we protect CPS from memory-safety attacks? In this
paper, we propose a full-stack memory-safety attack detection method
to address this challenge. We also quantify the notion of tolerability
of memory-safety overheads (MSO) in terms of the expected real-time
constraints of a typical CPS. We implemented and evaluated our pro-
posed solution on a real-world Secure Water Treatment (SWaT) testbed.
Concretely, we show that our proposed solution incurs a memory-safety
overhead of 419.91µs, which is tolerable for the real-time constraints im-
posed by the SWaT system. Additionally, We also discuss how different
parameters of a typical CPS will impact the execution time of the CPS
computational logic and memory safety overhead.

1 Introduction

Cyber-physical systems [1–3], which integrate computations and communica-
tions with physical processes, are gaining attention and being widely adopted in
various application areas including power grid, water systems, transportation,
manufacturing, healthcare services and robotics, among others. Despite their
importance, two major issues have raised concerns about the safety of CPS in
general. On the one hand, the increasing prevalence of cyber attacks poses a
serious security risk; on the other hand, real-time requirements and legacy hard-
ware/software limit the practicality of certain security solutions available. Thus,
the trade-off between security, performance and cost remains one of the main
design challenges for CPS.

In this paper, we focus on memory-safety attacks against computing nodes
of a CPS. These attacks typically are launched on programmable logic con-
trollers (PLCs) and exploit memory-safety vulnerabilities. Most PLCs nowadays
are user-mode applications running on top of a POSIX-like OS, often Linux
OS. Therefore, memory-safety vulnerabilities may be discovered on the PLC
firmware and control software (user-space) or the Linux kernel (kernel-space).



For example, a malware can corrupt the memory of the PLC or the kernel to
hijack or otherwise subvert its operations.

Memory-safety vulnerabilities arise due to the use of programming languages
where memory management is handled manually, such as C/C++. Those lan-
guages are particularly relevant in systems with stringent real-time constraints
since they allow skilled programmers to produce efficient compiled code. How-
ever, since firmwares of PLCs and operating systems are commonly implemented
in memory-unsafe languages (for the sake of efficiency), the memory unsafety re-
mains a significant security concern. For instance, buffer overflows and dangling
pointers, are regularly discovered and reported in modern PLCs.

Common Vulnerabilities and Exposures (CVE) [4] have been reported for a
wide-range of memory-safety vulnerabilities only on PLCs for the last couple of
decades. For example, a buffer overflow vulnerability concerns Allen-Bradley’s
RSLogix Micro Starter Lite (CVE-2016-5814) [5]. This allows remote attackers
to execute arbitrary code via a crafted rich site on summary (RSS) project file.
Yet other buffer overflow vulnerabilities are reported on this PLC [6, 7]. Similarly,
CVEs are also recently reported for memory-safety vulnerabilities discovered on
Siemens PLC ([8], [9]), Schneider Electric Modicon PLC ([10], [11]), ABB PLC
automation ([12]), and so on. Recent CVE reports also show a high volume of
interest in exploiting the Linux kernel [13].

Existing countermeasures against memory-safety attacks [14–26] face several
challenges to be employed in the context of CPS. First, almost all of them have
architectural compatibility problems in working with PLCs, because the PLCs
are often based on RISC-based ARM or AVR CPU architectures. More fun-
damentally, the countermeasures have non-negligible runtime overheads, which
may unacceptably compromise the performance of a CPS. Violation of tim-
ing constraints in a CPS may lead to serious consequences, including complete
system damage or disruption and incorrect control by the use of stale informa-
tion. Hence, vis-a-vis the exploitation concerns, performance and availability are
equally critical in a CPS environment.

To cover a wide range of memory-safety errors, the code-instrumentation
based countermeasures, which we refer to as memory-safety tools, offer stronger
guarantees. These tools detect memory-safety violations before the attackers get
a chance to exploit them. Although there are published benchmarks for the
overheads caused by such tools, which give an intuition of average penalties to
be paid when using them, it is still unclear how they perform in a CPS context.

In this paper, we leverage memory-safety compilation tools ASan [20] (for the
user-space) and KASan [27] (for the kernel-space) to enforce full-stack memory
safety in CPS. We quantify the performance impact of our solution via an em-
pirical approach that measures the memory-safety overhead. We evaluated our
approach on SWaT [28], a realistic CPS water treatment testbed that contains
a set of real-world vendor-supplied PLCs. However, the PLC firmware for the
SWaT is closed-source and hence, it does not allow us to incorporate additional
memory-safety solutions. To circumvent this challenge, we prototyped an experi-
mental setup, which we call open-SWaT, based on open-source PLCs and mimic
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the behavior of the SWaT according to its detailed operational profile. Our ex-
periments on open-SWaT reveal that the introduced memory-safety overhead
would not impact the normal operation of SWaT.

In summary, this work tackles the problem of quantifying the practical tol-
erability of a strong full-stack memory-safety enforcement on realistic Cyber-
Physical Systems with hard real-time constraints and limited computational power.

We make the following contributions: a) We enforce a full-stack memory-
safety countermeasure based on memory-safe compilation for a realistic CPS
environment. b) We empirically measure and quantify the tolerability of the
induced overhead of the countermeasure based on the real-time constraints of a
real industrial control system. c) We discuss parameters that affect the absolute
overhead to generalize our observations on tolerability beyond our case study.

2 Background

In this section, we provide background information on cyber-physical systems,
the CPS testbed we use for experimentation (SWaT) and the memory-safety
tools we enforced to our CPS design (ASan and KASan).

2.1 Overview of CPS

CPS constitute complex interactions between entities in physical space and cyber
space. Unlike traditional IT systems, these complex interactions are achieved
through communication between physical world via sensors and digital world
via controllers (PLCs) and other embedded devices. A general architecture of
CPS and the interactions among its entities is shown on Figure 2 (in Appendix).
Since these systems are real-time, there are latency and reliability constraints.
If these real-time constraints are not met, system could run in to an unstable
and unsafe state. The devices in a typical CPS are resource constrained too. For
example, PLCs and I/O devices have limited memory and computational power.
In general, a typical CPS consists of the following entities:

-Plants: Entities where physical processes take place.

-Sensors: devices that observe or measure state information of plants and phys-
ical processes which will be used as inputs for controllers (PLCs).

-PLCs: entities that make decisions and issue control commands (based on inputs
obtained from sensors) to control plants.

-Actuators: entities that implement control commands issued by PLCs.

-Communication networks: communication medias where packets (containing
sensor measurements, control commands, alarms, diagnostic information, etc)
transmit over from one entity to another.

-SCADA: a software entity designed for process controlling and monitoring. It
consists of human-machine interface (HMI) – for displaying state information of
plants – and historian server (for storing all operating data and alarm history).
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2.2 Overview of SWaT

SWaT [28] is a fully operational water purification plant designed for research
in the design of secure cyber physical systems. It produces 5 gallons/minute of
doubly filtered water.

Purification process. The whole water purification process is carried out by
six distinct, but cooperative, sub-processes. Each process is controlled by an
independent PLC (details can be found on [29])

Components and specifications. The design of SWaT consists of various
components such as real-world PLCs to control the water purification process;
a remote input/output (RIO) terminal consisting of digital inputs (DI), digital
outputs (DO) and analog inputs (AI); a SCADA system to provide users a
local system supervisory and controls; a complex control program written in
ladder logic; and so on. It also consists of various system specifications such
as a real-time constraints and communication frequencies with other PLCs and
the SCADA system. A detailed account ofthe components and specifications is
provided in our previous work [30].

2.3 ASan

As discussed on the introduction, despite several memory-safety tools being avail-
able, there applicability in the CPS environment is limited due to compatibil-
ity and performance reasons. After researching and experimenting on various
memory-safety tools, we chose ASan [20] (for the user-space enforcement) as
a basis for our empirical study because of its error coverage, high detection
accuracy and relatively low runtime overhead when compared to other code-
instrumentation based tools. A detailed account on error coverage and runtime
overhead of ASan (in comparison with other tools) is provided on [20, 31].

ASan is a compile-time code instrumentation memory-safety tool. It inserts
memory-safety checks into the program code at compile-time, and it detects and
mitigates memory-safety violations at runtime. ASan covers several memory-
safety vulnerabilities such as buffer overflows, dangling pointers (use-after-free),
use-after-return, memory leaks and initialization order bugs. Although there are
also some memory errors, e.g., uninitialized memory reads, that are not covered
by ASan, such errors are less critical and rarely exploited in practice.

Similar to other memory-safety tools, the off-the-shelf ASan has compatibility
issues with RISC-based ARM or AVR based architectures. ASan has also a
problem of dynamically linking shared libraries, e.g., glibc, for our experimental
setup. Therefore, as explained on Section 4.1, our initial task was fixing those
problems to fit our experimental design. For this task it was crucial that ASan
is an open-source project, which allowed for several customizations.
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2.4 KASan

KASan[27, 32] is a fast and dynamic memory error detector tool mainly de-
signed for the Linux kernel. It is also a compile-time code instrumentation
memory-safety tool. However, KASan is designed to cover only buffer overflows
and dangling pointers not to significantly affect the performance of Linux ker-
nel. Consequently, its runtime overhead is considerably low when compared to
ASan. Several kernel memory bugs have been already detected using KASan
[33]. Therefore, we chose KASan for the kernel-space enforcement. The current
version of KASan is supported only for the x86 64 and ARM64 architectures.
Hence, it has compatibility issue with ARM32 architecture, which we have fixed
it. As discussed on Section 6.2, the practical tolerability of its overhead (together
with ASan) is also evaluated against the real-time constraints of SWaT.

3 Attacker Model and Memory Safety Overhead

In this section, we will introduce our attacker model and formulate its implication
in computing memory-safety overheads and its tolerability.

3.1 Attacker model

Memory-safety attacks, such as code injection and code reuse, mainly exploit
memory-safety vulnerabilities in the firmware, control software or OS kernel of
PLCs. Figure 2 (in Appendix) shows an architectural point of view of memory-
safety attacks in CPS. In general, we consider the following five steps involved
in a memory-safety attack scenario:

1. Interacting with the victim PLC, e.g., via network connection.
2. Finding a memory-safety vulnerability (e.g. buffer overflow) in the firmware,

control software or the OS kernel with the objective of exploiting it.
3. Triggering a memory-safety violation on the PLC, e.g., overflowing a buffer.
4. Overwriting critical addresses of the vulnerable program, e.g., overwriting

return address of the PLC program.
5. Using the new return address, diverting control flow of the program to an

injected (malicious) code (code injection attacks) or to existing modules of
the vulnerable program (code reuse attacks). In the former case, the attacker
can get control of the PLC with its injected code. In the latter case, the
attacker needs to collect appropriate gadgets from the program, then she
will synthesize a shellcode that will allow her to get control of the PLC.

3.2 Modeling Memory Safety Overhead

To ensure memory-safety, firmware and control software of a PLC and kernel
of the hosting OS should be compiled with a memory-safety tool. Hence the
memory-safety overhead (MSO) will be added to the execution time of the PLC.
PLCs handle two main processes – a communication process and a scan cycle
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process. The communication process handles any network communication related
tasks, e.g., creating connections with communicating entities and receiving and
sending network requests. The scan cycle thread handles the main PLC process
that involves three operations: scanning inputs, executing the underlying control
program and updating outputs. The PLC scan cycle starts by reading the state
of all inputs from sensors and storing them to the PLC input buffer. Then, it will
execute the control program of the PLC and issue control commands according
to the state of sensor inputs. The scan cycle will be concluded by updating output
values to the output buffer and sending control commands to the actuators.

The measurement of the actual time elapsed by the PLC scan process, i.e.,
the time elapsed to scan inputs, execute the PLC program and update outputs
is reflected via scan time (Ts). By hardening the PLC with memory-safety pro-
tection, we also increase the scan time, which is attributed to the memory safety
overhead. Concretely, the memory safety overhead is computed as follows:

MSO = T̂s − Ts, (1)

where T̂s and Ts are scan time with and without memory-safe compilation, re-
spectively. A detailed account of modeling Ts is provided in our earlier work [30].

3.3 Quantifying Tolerability

A typical CPS involves hard real-time constraints. With memory-safe compila-
tion, we introduce additional overhead, specifically increasing the scan time of
a PLC (cf. Equation (1)). We define the notion of tolerability to check whether
the induced overhead by the memory-safe compilation still satisfies the real-time
constraints imposed by the CPS.

Concretely, a typical scan cycle of the PLC must be completed within the
duration of the specified cycle time (Tc). We define two notions of tolerability – 1)
for average-case and 2) for the worst-case. In particular, after enabling memory-
safe compilation, we compute the scan time (i.e., T̂s) for n different measurements
and compute the respective average and worst-case scan time. Formally, we say
that the MSO is tolerable in average-case if the following condition is satisfied:∑n

i=1 T̂s(i)

n
≤ Tc (2)

In a similar fashion, MSO is tolerable in the worst-case with the following con-
dition:

n
max
i=1

T̂s(i) ≤ Tc (3)

where T̂s(i) captures the scan time for the i-th measurement after the memory-
safe compilation.

4 Enforcing Full-Stack Memory-Safety

It is often mistakenly believed that there is no operating system in PLCs.
Most PLCs today are just user-mode applications running on top of POSIX-
like operating systems such as Linux OS. For example, Allen-Bradley PLC5 has
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Microware OS-9 [34]; Allen-Bradley Controllogix has VxWorks [34]; Schneider
Quantum has VxWorks [34]; Emerson DeltaV has VxWorks [34]; LinPAC has
Linux OS [35]; OpenPLC has Linux OS [36]; User-programmable Linux® con-
trollers has Linux OS [37]; and so on. Thus, the PLCs work as a software stack
running on top of the underlying OS. Therefore, the overall architecture of the
control system consists of two main parts: the application stack (that includes
the PLC firmware and control software) and the underlying OS.

As discussed in the introduction, the PLC firmware and the control software
might have memory-safety vulnerabilities as they are often written in C/C++
due to performance reasons. As such, memory-safety attacks could exploit such
vulnerabilities to attack PLCs. Similarly, operating systems are also often imple-
mented in C/C++, hence they might also have memory-safety vulnerabilities.
For example, a VxWorks vulnerability (reported on US-CERT [38]) affected
Rockwell and Siemens products. Therefore, memory-safety attacks could also
exploit vulnerabilities on the operating systems. In particular, attacks could ex-
ceptionally target vulnerabilities in the kernel (as also recent trends show in CVE
[13]); because the kernel is the core of the machine’s OS that is responsible for
several critical tasks, e.g. memory management, CPU allocation, system calls,
input/output handling, and so on.

To address these security concerns, we proposed a full-stack memory-safety
solution that comprises a user-space and kernel-space memory-safety enforce-
ments. The former refers a memory-safety enforcement to the PLC firmware
and control software whereas the later refers a memory-safety enforcement to
the OS kernel where the PLC is running on. In this research work, we use Open-
PLC controller [36] – a software stack running on top of Linux OS – and the
following sections discuss how we enforced the two memory-safety solutions.

4.1 Enforcing User-Space Memory-Safety

As stated on the introduction, our approach to counter memory-safety attacks
at user-space level is by secure compiling of the PLCs’ firmware and control
software. We ported ASan for that, but porting ASan to our CPS design was not
a straightforward task because of its compatibility and dynamic library linking
problems. Thus, we fixed those problems by modifying and rebuilding its source
code and by enabling dynamic library linking runtime options.

To do the secure compilation, we also need to integrate ASan with a native
C/C++ compiler. Fortunately, ASan can work with GCC or CLANG with a
-fsanitize=address switch – a compiler flag that enables ASan at compile
time. Therefore, we compiled our OpenPLC firmware ad control software using
GCC with ASan enabled.

4.2 Enforcing Kernel-Space Memory-Safety

As discussed on Section 2.4, KASan [27] is a memory-safety tool designed for
the Linux kernel. Therefore, we compiled the Raspberry PI Linux kernel (where
our controller is running on) with KASan to detect kernel-level memory-safety
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violations, such as buffer overflows and dangling pointers. To do so, we configure
the kernel with a KASAN=y configuration option. But, doing so was not also a
straightforward task because of an architectural comparability problem to work
on a 32-bit Raspbian kernel. Because KASan is designed only for the x86-64 and
ARM64 architectures. To solve the problem, we did a custom kernel build by
cross-compiling with a 64-bit Linux OS.

4.3 Detection and mitigation

As discussed on Section 2.3 and 2.4, ASan and KASan instrument the protected
program to ensure that memory access instructions never read or write the so
called “poisoned” redzones [20]. Redzones are small regions of memory inserted
in between any two stack, heap or global objects. Since the program should
never address them, access to them indicates an illegal behavior and it will be
considered as a memory-safety violation. This policy detects sequential buffer
over/underflows, and some of the more sophisticated pointer corruption bugs
such as dangling pointers (use-after-free) and use-after-return bugs (see the full
list on Table 3). With the ASan enforcement, we detected two global buffer
overflow vulnerabilities on the OpenPLC Modbus implementation.

The mitigation approach of ASan and KASan is based on the principle of
“automatically aborting” the vulnerable program whenever a memory-safety
violation is detected. It is effective in restricting memory-safety attacks not to
exploit the vulnerabilities. However, this approach might not be acceptable in a
CPS environment since it highly affects availability of the system and leaves the
control system in an unsafe state. Thus, we are currently working on a different
mitigation approach to address these limitations.

5 Experimental Design

Unfortunately, SWaT is based on closed-source proprietary Allen Bradely PLCs,
hence we cannot modify their firmware to enforce memory-safety solutions. Thus,
we designed open-SWaT – a mini CPS based on open source PLCs that mimics
features and behaviors of SWaT. By doing so, we managed to conduct our exper-
iment on realistic and closed-source proprietary PLCs, indirectly. We discussed
design details of open-SWaT in the following sections.

5.1 open-SWaT

open-SWaT is designed using OpenPLC [36] – an open source PLC for industrial
control systems. With open-SWaT, we reproduce operational details of SWaT;
in particular we reproduce the main factors (mentioned on Section 6.4) that
have significant impact on the scan time and MSO. In general, the design of
open-SWaT consists of the following details.

PLCs: we designed the PLCs using OpenPLC controller that runs on top of
Linux on Raspberry PI. To reproduce hardware specifications of SWaT PLCs,
we specified 200MHz fixed CPU speed and 2Mb user memory for our PLCs.
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RIO : we use Arduino Mega as RIO terminal. It has AVR based processor
with 16MHz clock speed. It consists of 86 I/O pins that can be directly connected
to the I/O devices. To reproduce the number of I/O devices of SWaT, we used
32 DI (push-buttons, switches and scripts), 13 AI (temperature and ultrasonic
sensors) and 16 DO (light emitter diodes (LEDs)).

PLC program: we have designed a control program written in ladder diagram
that has similar complexity to the one in SWaT (a sample diagram is shown on
Figure 3 (in Appendix)). It consists of various types of instructions such as
logical (AND, OR, NOT, SR (set-reset latch)), arithmetic (addition (ADD),
multiplication (MUL)), comparisons (equal (EQ), greater than (GT), less than
(LT), less than or equal (LE)), counters (up-counter (CTU)), timers (turn on
timer (TON), turn off timer (TOF)), contacts (normally-open (NO), normally-
closed (NC)), and coils (normally-open (NO), normally-closed (NC)). We stated
complexity of the program both in terms of number of instructions and lines of
code (LOC). The overall PLC program consists of 129 instructions; details are
shown on Table 4 (in Appendix). Size of the program (when translated to C
code) is 508 LOC.

Fig. 1. Architecture of open-SWaT [30]

Communication frequency : the com-
munication architecture of open-
SWaT (illustrated on Figure 1) con-
sists of analogous communicating
components with that of SWaT. open-
SWaT uses both type of modbus com-
munication protocols – modbus TCP
(for Ethernet or wireless communi-
cation) and modbus RTU (for serial
communication). The communication
among PLCs is via modbus TCP or
modbus RTU whereas the communi-
cation between PLCs and the SCADA
system is via modbus TCP. Frequency
of communication among PLCs and
the SCADA system is similar to that in SWaT. The communication between
PLCs and Arduino is via USB serial communication. The frequency of receiving
inputs from Arduino or sending outputs to Arduino is 100Hz.

Real-time constraint : based on the real-time constraint of SWaT, we set 10ms
cycle time (real-time constraint) to each PLC in open-SWaT.

SCADA system: we use ScadaBR [39], a full SCADA system consisting of
web-based HMI.

In summary, the design of open-SWaT is expected to be very close to SWaT.
In particular, the PLCs (in both cases) are expected to operate similarly. Because
their hardware specifications, the inputs they receive from sensors, the PLC
program they execute, the control command they issue, the number of nodes
they are communicating with, the frequency of communications, and so on, are
designed to be similar. Thus, we expect that the MSO in open-SWaT would also
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remain close to that in SWaT. Therefore, if the MSO is tolerable in open-SWaT,
it would be the same for SWaT. In the future, we plan to replace the PLCs at
SWaT with the open-source and memory-safety enabled PLCs of open-SWaT.

5.2 Measurement details

We have implemented a function using POSIX clocks (in nanosecond resolution)
that measures execution time of each operation in the PLC scan cycle. The
function measures elapsed time of each operation. Results will be then exported
to external files for further manipulation, e.g., computing MSO and plotting
graphs. We run 50000 scan cycles for each PLC operation to measure the overall
performance of the PLC.

6 Evaluation and Discussion of the Results

In this section, we performed a detailed evaluation and discussion of the ex-
perimental results to figure out whether the memory-safety tools are accurate
enough to detect memory-safety violations and efficient enough to work in a
CPS environment. In brief, our evaluation has three parts: security (accuracy) –
detection accuracy of ASan and KASan, performance (efficiency) – tolerability
of its runtime overhead in CPS, and memory usage overheads.

6.1 Security

As a sanity check on our configuration, we have evaluated our setup against a
wide-range of memory-safety vulnerabilities to explore the detection accuracy
of ASan and KASan. The results show that, as in the original paper [20], ASan
detects memory-safety violations with high accuracy – without false positives for
all the vulnerabilities listed on Table 3 (in Appendix) and rare false negatives
for global buffer overflow and use-after-free vulnerabilities due to the exceptions
discussed on [20].

As discussed on Section 2.4, KASan’s error coverage is purposely limited
to buffer overflows and use-after-free vulnerabilities for performance reason. We
evaluated its detection accuracy against these vulnerabilities in the Linux kernel
and it accurately detects them; no false positives or negatives were discovered
or reported so far. Both tools also effectively mitigate the detected violations
regardless of the mitigation limitations discussed on Section 4.3.

6.2 Performance

According to published benchmarks [20], the average runtime overhead of ASan
is about 73%. However, all measurements were taken on a non-CPS environment.
With our full-stack memory-safety enforcement, i.e., ASan + KASan, the average
overhead is 94.32%. The overall performance report of the PLC including the
execution time of each operation and its respective MSO is depicted on Table 1.
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To evaluate tolerability of this overhead, we have checked if it satisfies the
conditions defined on Eq. (2) (for average-case) and Eq. (3) (for worst-case). As
shown on Table 1,mean(T̂s) = 865.10µs, and Tc = 10000µs. Therefore, according
to Eq. (2), the overhead is tolerable for SWaT with the average-case scenario.

To evaluate the tolerability in the worst-case scenario, we check if it satis-
fies Eq. (3). As shown on Table 1, max(T̂s) = 5238.46µs, and Tc = 10000µs.
It is still tolerable, thus ASan satisfies the real-time constraint of SWaT both
in the average-case and worst-case scenarios. Therefore, we can conclude that
SWaT would tolerate the overhead caused by memory-safe compilation, while
significantly increasing its security.

Table 1. Memory-safety overheads (MSO)

Operations
Number
of cycles

Network
devices

CPU speed
(in MHz)

Ts

(in µs)
T̂s

(in µs)

MSO
(mean)

Mean Max Mean Max in µs in %

Input scan 50000 6 200 114.94 995.10 204.53 1202.28 89.59 77.95

Program execution 50000 6 200 150.32 716.62 305.59 1982.57 155.27 103.29

Output update 50000 6 200 179.93 1020.47 354.98 2053.61 175.05 97.29

Full scan time 50000 6 200 445.19 2732.19 865.10 5238.46 419.91 94.32

6.3 Memory usage

We also evaluated memory usage overheads of our security measure. Table 2 (in
Appendix) summarizes the increase in virtual memory usage, real memory us-
age, binary size and shared library usage collected by reading VmPeak, VmRSS,
VmExe and VmLib fields, respectively, from /proc/self/status. It shows a huge
increase in virtual memory usage (30.45×). This is mainly because of the allo-
cation of large redzones with malloc. However, the real memory usage overhead
is only 1.40×. These overheads are still acceptable since most PLCs nowadays
come with at least 1GB memory size.

6.4 Validation and sensitivity analysis

More generally, how can we evaluate a system’s tolerability to overheads? On the
one hand, we may perform an empirical analysis such as the one discussed in the
previous subsections. But we may also attempt to isolate the individual factors
impacting performance on a CPS in order to perform a design-time analysis.

Empirical analysis Suppose the tolerability argument is represented by Φ,
where Φ represents Eq. (2) (for average-case) and Eq. (3) (for worst-case).
We have empirically measured the scan time of each 50000 scan cycles, say
T̂s,1, ..., T̂s,50000. Because of the fact that the bar between the worst-case scan

time measured, i.e., max(T̂s) = 5238.46µs and the tolerability limit, i.e., Tc =
10000µs is still 47.62%, we can fairly conclude that the probability of getting

T̂s
′

such that T̂s
′
2 Φ is very rare. Therefore, the empirical analysis can be used
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as one way of validating tolerability of the MSO even though it cannot prove
completeness of the argument. However, a more thorough analysis is needed to
conclude that there are no corner cases that might suddenly occur and cause
more significant delays.

WCST analysis Thus, a deeper analysis to validate the tolerability argument is
needed. This is a theoretical analysis (beyond the empirical results) to show that

there would not occur a new WCST T̂s
′

such that T̂s
′
> Tc. For simplicity, let us

refer the occurrence of the condition T̂s
′
> Tc as an intolerability condition. For

this analysis, first we experimentally identified the main factors that can have
significant effect on the PLC scan time and MSO. We discussed below how the
factors can affect the scan time and why they would not lead to the intolerability
condition.
-CPU speed (SCPU ∈ R): obviously, clock speed of the processor is a major
factor for the PLC performance. It determines how much clock cycles the CPU
performs per second, hence it determines how much instructions the PLC can
process per second. SCPU affects all operations of the PLC. However, since SCPU

is fixed with “userspace” governor, it would not lead to intolerability.
Memory size (SM ∈ R): size of memory is fixed. The memory size needed for
memory mapping and redzones allocation (due to the memory-safe compilation)
is already allocated at compile-time. Cache memory size is not also a big issue
in CPS. Because CPS data such as sensor data, control commands and state
information get updated very frequently. Thus, data caching is not that much
relevant in CPS. Therefore, SM would not lead to intolerability.
-Number of sensors (NS ∈ N): the number of input devices (sensors) con-
nected to the PLC is one factor that significantly affect the PLC scan time
and MSO. Because, the time to scan inputs depends on the number of sensors
connected with the PLC. However, NS is fixed, hence it would not cause the
intolerability condition to happen.
-Number of actuators (NA ∈ N): the number of output devices (actuators)
connected to the PLC is also another factor that has significant effect on the
PLC scan time and MSO. Because, the time to update outputs depends on the
number of output devices connected with the PLC. However, since NA is fixed,
it would not lead to intolerability.
-Complexity of the PLC program (CP ∈ RZ): As discussed on Section 5.1,
the PLC program can consist of various types of instructions. Each instruction
has its own execution time. Therefore, CP can be expressed in terms of the num-
ber and type of instructions that the overall program consists of (Z = {number
of instructions, type of instructions}). As such, it is a major factor for the PLC
scan time as it affects the control program execution time. However, CP is fixed
and the program does not also contain loops or recursion functions. Thus, it
would not lead to the intolerability condition.
-Communication frequency (CF ∈ R): the PLC communicates with various
devices such as RIO (sensors and actuators), other PLCs and SCADA systems.
The communication frequency can be expressed in terms of the number of pack-
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ets the PLC sends or receives to/from other communicating devices. Handling
all such communications can take significant amount of time. In particular, it
significantly affects the PLC’s performance when the PLC handles the concur-
rency issues between the scan cycle and communication threads to access shared
resources, such as shared buffers [30]. Therefore, the communication frequency
between the PLC and other communicating entities is another factor for the
PLC scan time. However, when the PLC communicates with n nodes, it receives
or sends packets with a constant rate. Thus, the CF is fixed. In addition, realistic
PLCs (as real-time systems) efficiently handle concurrency problems. Therefore,
the CF would not result the intolerability condition.

We also performed a sensitivity analysis on the factors in regard to its effect
on the PLC scan time and MSO. This analysis will help us to extrapolate math-
ematical formulas predicting the expected MSO and its tolerability to a given
CPS. A detailed account of our sensitivity analysis is provided in our previous
work [30].

7 Related work

In this section, we explore related works done in providing memory-safety so-
lutions against memory-safety attacks and measuring and analyzing memory-
safety overheads in the CPS environment.

In our earlier work [30], we enforced ASan to a CPS environment and mea-
sured its runtime overhead (81.82%). However, it was only a user-space enforce-
ment and the critical kernel-level security concern was ignored. To address that
limitation, we enforced a full-stack memory-safety, i.e., ASan + KASan, in our
current work. With a similar setup but a different kernel configuration, the aver-
age overhead of the proposed solution is 94.32%. Meaning, it incurs an additional
overhead of 12.5%, but with a significant boost in security. To enhance compre-
hensiveness of our experimental results, we also increased the number of scan
cycles (whose scan time is empirically measured) from 10000 to 50000.

SoftBoundCETS is a compile-time code-instrumentation tool that detects
all violations of spatial memory-safety (SoftBound [21]) and temporal memory-
safety (CETS [22]) in C. It is a complete memory-safety tool that works under
the LLVM environment. However, its runtime overhead is very high (116%) as
compare to ASan (73%). In addition, it is incompatible for the CPS environment;
because it is implemented only for the x86-64 target architecture and it is also
dependent on the LLVM infrastructure.

Cooprider et al. [40] enforced efficient memory-safety solution for TinyOS
applications by integrating Deputy [41], an annotation based type and memory-
safety compiler, with nesC [42], a C compiler. Thus, they managed to detect
memory-safety violations with high accuracy. To make this memory-safety so-
lution practical in terms of CPU and memory usage, they did aggressive opti-
mization by implementing a static analyzer and optimizer tool, called cXprop.
With cXprop, they managed to reduce memory-safety overhead of Deputy from
24% to 5.2%, and they also improved memory usage through dead code elimina-
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tion. However, their solution has limitations to apply it in a CPS environment,
because it is dependent on runtime libraries of TinyOS.

Zhang et al. [43] modeled the trade-off between privacy and performance in
CPS. While he leveraged the differential privacy approach to preserve privacy
of CPS, he also analyzed and modeled its performance overhead. He proposed
an approach that optimizes the system performance while preserving privacy
of CPS. This work is interesting from point of view of analyzing performance
overheads in CPS, but it is not from memory-safety perspective.

Stefanov et al. [44] proposed a new model and platform for the SCADA
system of an integrated CPS. With the proposed platform, he modeled real-time
supervision of CPS, performance of CPS based on communication latencies, and
also he assessed and modeled communication and cyber security of the SCADA
system. He followed a generic approach to assess and control various aspects
of the CPS. However, he did not specifically work on memory-safety attacks
or memory-safety overheads. Vuong et al. [45] tried to evaluate performance
overhead of a cyber-physical intrusion detection technique. But, it was not on
memory-safety either.

Several CFI based solutions (e.g., [18], [19]) have been also developed against
memory-safety attacks. However, CFI based solutions have some limitations in
general (i) determining the required control flow graph (often using static anal-
ysis) is hard and requires a significant amount of memory; (ii) attacks that do
not divert control flow of the program cannot be detected (for instance using
Data Oriented attacks [46]). These and other reasons can limit the applicability
of CFI solutions in the CPS environment.

In summary, to the best of our knowledge, there is no prior research work that
enforced a full-stack memory-safety solution specifically to the CPS environment,
and that measured and evaluated tolerability of the induced memory-safety over-
head in accordance to the real-time constraints of cyber-physical systems.

8 Conclusion

In this work, we presented the results of implementing a strong full-stack memory-
safety enforcement in a simulated albeit realistic industrial control system using
ASan and KASan. Our setup allowed us to benchmark and empirically measure
the runtime overhead of the enforcement and, based on the real-time constraints
of an ICS, to judge the applicability in a realistic scenario. Our experiments
show that the real-time constraints of SWaT can be largely met even when im-
plementing a strong memory-safety countermeasure in realistic hardware. We
also preliminary discuss what factors impact the performance of such a system,
in a first attempt to generalize our results.

In the future, we intend to study other CPS with different constraints, e.g.,
in power grid and urban transportation systems. Such studies will allow us to
extrapolate formulas predicting the tolerability of systems to MSO and thus
aiding in the design of resilient CPS before such systems are deployed.
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Appendix

Table 2. Memory usage overheads (in MB)

Category Original Instrumented Increase

Virtual memory usage 20.412 621.580 30.45×
Real memory usage 8.172 11.476 1.40×
Binary size 0.138 0.316 2.29×
Shared library usage 2.832 4.300 1.52×
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Fig. 2. The CPS architecture and memory-safety attacks [30]

Table 3. Detection accuracy of ASan

Vulnerabilities False positive False negative

Stack buffer overflow No No

Heap buffer overflow No No

Global buffer overflow No Rare

Dangling pointers No Rare

Use-after-return No No

Initialization order bugs No No

Memory leaks No No
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Fig. 3. Sample PLC program in ladder diagram
[30]

Table 4. Instruction count

Instructions Count

Logical
AND
OR
NOT
SR

17
14
5
1

Arithmetic
ADD
MUL

1
2

Comparisons
EQ
GT
LT
LE

3
3
2
2

Timers
TON
TOF

3
9

Counters
CTU 1

Selections
SEL
MAX

1
1

Contacts
NO
NC

38
3

Coils
NO
NC

21
2

Total 129
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