
EARIC: Exploiting ADC Registers in IoT and Control
Systems

Abstract. An analog-to-digital converter (ADC) is a critical part of most computing
systems as it converts analog signals into quantifiable digital values. Since most digital
devices operate only on digital values, the ADC acts as an interface between the digital
and analog worlds. Hence, ADCs are commonly used in a wide-range of application areas,
such as internet of things (IoT), industrial control systems (ICS), cyber-physical systems
(CPS), audio/video devices, medical imaging, digital oscilloscopes, and cell phones, among
others. For example, programmable logic controllers (PLCs) in ICS/CPS often make con-
trol decisions based on digital values that are converted from analog signals by ADCs.
Due to its crucial role in various applications, ADCs are often targeted by a wide-range
of physical and cyber attacks. Attackers may exploit vulnerabilities that could be found
in the software/hardware of ADCs. In this work, we first conduct a deeper study on the
ADC conversion logic to scrutinize relevant vulnerabilities that were not well explored
by prior works. Hence, we manage to identify exploitable vulnerabilities on certain ADC
registers that are used in the ADC conversion process. These vulnerabilities can allow
attackers to launch dangerous attacks that can disrupt the behaviour of the targeted sys-
tem (e.g., an IoT or control system) in a stealthy way. As a proof of concept, we design
three such attacks by exploiting the vulnerabilities identified. Finally, we test the attacks
on a mini-CPS testbed we designed using IoT devices, analog sensors and actuators. Our
experimental results reveal high effectiveness of the proposed attack techniques in mis-
leading PLCs to make incorrect control decisions in CPS. We also analyze the impact of
such attacks when launched in realistic CPS testbeds.

Keywords: ADC Security · ADC Vulnerabilities · ADC Attacks · CPS Security · ICS
Security · PLC Attacks · IoT Security.

1 Introduction

A signal that represents a continuous range of values that varies over time is referred to as an
analog signal [30]. Such signals can also be characterized by natural phenomena, such as light-
ning, earthquake, wind speed, volcano, sound waves, weight measurements, etc. Analog signals
are often in the form of electrical energy, such as voltage, current or electromagnetic power.
These signals typically come from sound, light, temperature or motion sensors. However, analog
signals, which have more than 2 distinct readings, are not compatible in digital computation.
This is because, digital devices, such as computers and microcontrollers (MCUs)1, operate only
on binary or digital values, i.e., 0s and 1s. As such, it is required to convert analog signals to
digital values (i.e., discrete-time values) in order to process them using digital devices. This is
where the analog-to-digital converter (ADC) [23] comes in handy. As the name implies, ADC is
a system that converts an analog signal (i.e., continuous voltage values) to digital values, which
can be understood by most computers and MCUs for digital computation. Most state-of-the-art
MCUs have an inbuilt ADC. Therefore, such binary encoding of analog signals facilitates the
1 https://www.arrow.com/en/research-and-events/articles/engineering-basics-what-is-a-

microcontroller

2

interface between digital circuits and the real world. The analog-to-digital conversion logic of
ADC typically involves three steps: sampling and holding (S/H), quantization and encoding [33].
A high-level representation of a typical ADC process is shown in Figure 1.

Fig. 1: Input and output definitions of ADC [21]

ADCs are widely used in most digital systems that involve analog signals in its computations.
These includes IoT, control systems (e.g., ICS/CPS), image processing, digital multimeters, cell
phones, and medical imaging, to name a few. For example, PLCs [2] in ICS [34]/CPS [24,39] of-
ten make control decisions based on the inputs obtained from analog sensors (e.g., temperature,
pressure and force sensors). However, they cannot directly use analog inputs as they cannot un-
derstand analog signals. Hence, they have inbuilt ADCs that serve to convert the analog signals
into digital values. The PLCs will then use these digital values to make control decisions [21].

Since ADC is an integral and critical part of most computing systems, such as IoT and
ICS/CPS, it has been targeted by various types of cyber criminals. The attackers may exploit
vulnerabilities that could be found in the hardware or software of ADCs. For example, Bolshev et
al. [5] has exploited vulnerabilities in the sampling frequency and dynamic range of the ADC con-
version logic. There are also attacks that exploited the strong correlation between the ADC digi-
tal output codes and the ADC supply current waveforms [17]. Other attacks exploited fast attack
automatic gain control (AGC) vulnerability in ADC [3,16,19]. Other class of attacks exploited
the DAC-to-DAC crosstalk vulnerability in the ADC conversion logic [31,22,36]. Numerous side-
channel attacks have also exploited various types of vulnerabilities in ADC [26,27,29,12,4,10,14].
Hardware trojan attacks were also launched on the analog circuits of ADCs [11]. Other re-
searchers have conducted a security analysis on the output signals of the ADC datapath and its
control unit [35] and ADC power noise measurement attacks [37]. However, we are not aware
of existing attack techniques in the literature that specifically exploit vulnerabilities related to
ADC registers (the smallest and fastest memory locations that are built into the processor).
Hence, this work aims to bridge this gap in ADC security.

In this work, we first conduct a deeper analysis and study on ADCs to explore exploitable vul-
nerabilities in the analog-to-digital conversion logic. In particular, we study the various types of
ADC registers involved in the analog-to-digital conversion process. After systematically analyz-
ing the nature of these registers, we find out that most of them are vulnerable to a manipulation
attack. This is because, registers for low-end MCUs are often controllable by user code and have
no or little protections built in against unauthorized manipulations. Consequently, an attacker
may modify or clear certain values or flags of the registers to deceive the output of the ADC
conversion logic. Moreover, the attacks can be performed in a stealthy way so that it will be
very hard to be detected using conventional techniques. The attacks can also be carried out
physically or remotely through malicious code injection or malevolent system configuration. In
control systems, such as ICS/CPS, systematically manipulated ADC outputs can mislead PLCs

2. BACKGROUND 3

to make wrong control decisions. This may, in return, result in a disaster to the physical plant of
the ICS/CPS. To the best of our knowledge, there are no prior attacks presented in the literature
that specifically targeted ADC registers to deceit the ADC conversion process.

To scrutinize the actual exploitability of the registers, we design EARIC (Exploiting ADC
Registers in IoT and Control systems) – a scheme comprising the three types of attacks we de-
signed to manipulate the ADC conversion logic. In EARIC, we particularly target three critical
ADC registers that are commonly used in the ADC conversion logic. This includes, ADC mul-
tiplexer selection register (ADMUX), analog comparator control and status register (ACSR),
and two ADC data registers (i.e., ADC High register (ADCH) and ADC Low register (ADCL)).
By systematically manipulating the values or flags of these registers, we manage to deceive or
interrupt outputs of the ADC. That means, we force the ADC to return undesirable digital
values from analog signals. To this end, we design and perform three types of attacks on the
ADC conversion logic: (1) Deceiving the ADC conversion process – changing the expected ADC
output into a totally different value; (2) Creating denial of service (DoS) in the ADC process –
hanging the ADC conversion process and causing system unavailability; (3) Resetting the ADC
conversion process – making the ADC to always return an empty output. Finally, we assess and
evaluate the effectiveness of the proposed attacks using a minimalist CPS (mini-CPS) testbed
we designed using IoT devices, such as Arduino (as a soft PLC), analog sensors and actuators.

In general, the main motivation of this work is to show that dangerous stealthy attacks can
be launched into critical systems by exploiting certain ADC registers. In this work, we make the
following technical contributions.
1. We conduct a deeper study in the ADC conversion logic and identify vulnerabilities on the

ADC registers used in the analog-to-digital conversion process.
2. We design and perform three types of attacks by exploiting the vulnerabilities we identified.
3. We assess and evaluate the effectiveness (in terms of accuracy, efficiency and impact) of the

proposed attacks using an IoT-based mini-CPS testbed we designed.

2 Background

In this section, we provide relevant background information to this work. Specifically, we provide
a high-level information on the ADC conversion logic and cyber-physical systems (CPS). For
easy reference, Table 1 lists out all the relevant acronyms and notations used in this paper.

2.1 Overview of ADC

Analog and digital signals As highlighted in the introduction, analog signals are electromag-
netic signals that are characterized by a series of continuous values that varies with time. These
signals are illustrated in Figure 2. Such signals can be obtained from sound, temperature, light,
and motion phenomena using analog sensors.

Analog signals can be used as an input to solve various real-world problems. For example,
IoT services and control systems can use them to automate or control processes. However, these
signals cannot be directly used since digital devices, such as computers and microcontrollers,
can read only digital values. Hence, the analog signals need to be first converted to digital
signals before it is used by digital devices further computations. Unlike analog signals, which
are represented by a sequence of continuous values, digital signals are broken down into a set
of discrete values with time series or sampling rates. It usually have only two values – high (1)
and low (0). Consequently, all values in digital signal transmissions are in the form of 0’s and
1’s. Digital signals are illustrated in Figure 3.

4

Table 1: Description of acronyms and notations
Notation Description Notation Description
ACBG Analog comparator band gap DAC Digital-to-analog converter
ACD Analog comparator disable DoS Denial of service
ACIC Analog comparator input capture enable FS Full scale
ACI Analog comparator interrupt GND Ground
ACIE Analog comparator interrupt enable GUI Graphical user interface
ACIS Analog comparator interrupt mode select HMI Human machine interface
ACME Analog comparator multiplexer enable ICS Industrial control systems
ACO Analog comparator output IF Intermediate frequency

ACSR Analog comparator control and status
register IoT Internet of things

ADC Analog-to-digital converter LM35 An analog temperature sensor
ADMUX ADC multiplexer selection register LSB Least significant bit
ADCH ADC high register MCU Microcontroller
ADCL ADC low register MSB Most significant bit
ADEN ADC enable MUX Multiplexer selection register
ADFR ADC free running PCM Pulse code modulation
ADIE ADC interrupt enable PLC Programmable logic controller
ADIF ADC interrupt flag PSA Power side-channel attack
ADPS ADC pre-scaler selection R/W Read/Write
ADSC ADC start conversion REFS Reference selection
AREF Analog reference S/H Sampling and holding
ADLAR ADC left adjust result SAR Successive approximation register

ADMUX ADC multiplexer selection register SCADA Supervisory control and data
acquisition

AIN Analog input pin SoC System-on-Chip
AVCC Analog voltage common collector SRAM Static random-access memory
CPS Cyber-physical systems VREF reference voltage

Analog to digital conversion The conversion of analog signals to digital signals is carried
out by an analog-to-digital converter (ADC). In other words, ADCs serve to convert continuous-
time analog signals to discrete-time digital signals, which will be consumed by digital devices
for digital computations. Hence, most digital devices have builtin ADC, integrated with their
processors. They can also be connected to an external ADC. A simple ADC conversion schematic
is depicted in Figure 4

ADCs convert analog signals to digital signals using pulse code modulation (PCM)2 method,
which involves three main steps – sampling, quantizing and encoding [32,15]. ADCs on most
microcontrollers, e.g., PIC323, typically have a 10-bit wide resolution, i.e., with 1024 quantization
levels. Most microcontrollers also have multiple analog input channels due to their multiplexed

2 https://www.tutorialspoint.com/digital_communication/digital_communication_pulse_code_
modulation.htm

3 https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/
pic32-32-bit-mcus

https://www.tutorialspoint.com/digital_communication/digital_communication_pulse_code_modulation.htm
https://www.tutorialspoint.com/digital_communication/digital_communication_pulse_code_modulation.htm
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors/32-bit-mcus/pic32-32-bit-mcus

2. BACKGROUND 5

Fig. 2: Analog signals

Fig. 3: Digital signals

Fig. 4: Simple ADC design
Fig. 5: A simple ADC analog compara-
tor

ADC. For example, the PIC32MX460F512L4 microcontroller has 16 10-bit wide ADC channels.
ADCs also involve a wide-range of memory registers that play various roles in the analog-to-
digital conversion process. For example, the ADC’s output data, i.e., the converted digital value,
is stored in a 16-bit double data registers, i.e., ADCH (8-bit size) and ADCL (8-bit size). A high-
level architecture of the ADC conversion logic involving the main memory registers is illustrated
in Figure 7. A detailed discussion of some of the registers is also provided in Section 4.

Although it is hard to cover all details on how the ADC conversion logic works, we would like
to provide a high-level background on the ADC analog comparator below as it is an essential
building block in ADC and we also extensively use it in our proposed approach.

ADC Analog Comparator The ADC analog comparator [25] is an electronic circuit that
compares two input voltages and produces an output. The analog comparator output (ACO)
indicates which of the inputs is greater or lesser. A typical ADC analog comparator consists of
a positive input and a negative analog input. The magnitude of two different voltage levels are
measured by these 2 inputs. One comparator input uses the voltage input signal (VIN) and the
other comparator input uses the reference voltage (VREF). The digital logical output state of
the comparator is determined by comparing the two voltage levels "1" or "0" at the input of
4 https://www.microchip.com/en-us/product/PIC32MX460F512L

https://www.microchip.com/en-us/product/PIC32MX460F512L

6

the comparator. The VIN and VREF are compared and applied to the other inputs. If the VIN

is lower than the VREF (i.e., VIN < VREF), the output of the comparator will be "OFF". Vice
versa, it is "ON" if the VIN is greater than VREF . As a result, the comparator compares the
two voltage levels to determine which one is higher. The voltage divider formed by the resistors
R1 and R2 gives VREF (cf. Figure 5). If the values of the R1 and R2 are the same, then the
VREF level is clearly half the supply voltage. Figure 5 depicts a simple ADC analog comparator.
Further details about analog comparators can be found in [25]

2.2 Overview of CPS

Cyber-physical systems (CPS) are engineering systems where computations and communications
are firmly integrated with physical entities to automate and control industrial processes through
feedback control [24,39]. It comprises the following main entities [6]: physical plant (the physical
system where actual processes take place), sensors (devices that read state information of phys-
ical processes), PLCs (embedded devices that issue control commands based on sensor inputs),
actuators (physical entities that implement control commands issued by PLCs), SCADA [38] (a
software designed for process monitoring and controlling), HMI (a system to display the state
information of physical processes), and historian server (a server used to store operational and
historical data). An abstraction of a typical CPS model is depicted in Figure 6. A typical CPS
is also constrained by stringent real-time and availability requirements [9].

As discussed above, the PLC is at the heart of the CPS. It issues control commands based on
the inputs obtained from sensors. However, the sensors could be digital or analog. In the latter
case, the PLC cannot read analog signals like many other digital devices (see the discussion in
Section 2.1). Hence, the ADC is required to convert the analog signals to digital values before
the PLC uses them to make control decisions. To facilitate the conversion process, most PLCs
nowadays come with inbuilt ADCs.

Fig. 6: An abstraction of a CPS model

3. THREAT MODEL 7

3 Threat Model

In our threat model, we consider threats that may target digital systems, such as IoT and control
systems, by exploiting ADC-related vulnerabilities. In particular, we focus on threats that exploit
vulnerabilities of the ADC registers that are involved in the analog-to-digital conversion process.
We assume that the targeted digital devices (e.g., PLCs in CPS) are available either physically
(e.g., via serial connection) or remotely (e.g., via Internet). Hence, we consider both physical
attacks (e.g., insider attacks) and remote attacks (i.e., cyberattacks) in our threat model. In the
former case, the attack can be performed by injecting malicious code to the device through a
serial connection. In the latter case, the attack can be launched by uploading malicious code
to the device over Internet. Note that most digital devices (including IoT and control devices)
nowadays are connected to the Internet to facilitate over-the-air OS/firmware update or remote
code upload to the devices. For example, the Arduino board has an Ethernet bootloader5 that
allows users to upload code remotely. Such facilities may also allow the adversary to remotely
upload malicious code to the devices.

In either physical or remote attack, the adversary is also required to systematically tailor
malicious code that allows him to control the registers of low-end MCUs. Note that these registers
can be controlled by user code and have no or little underlying protections against manipulation
attacks. Hence, the adversary can manipulate the default values of the registers using his tailored
malicious code. The designed malicious code can be injected to the device’s firmware. In some
cases, the attacks might be done through malevolent system configurations. In our case, we
perform the attacks by injecting our malicious code into the Arduino firmware (details are
provided in Section 4).

In our threat model, we also assume the attacks to be performed in a stealthy way. This
make the attacks harder to be detected. Since the assumed stealthy attacks in ADC are also
targeting the interface between the physical and digital worlds, it is even more harder to be
detected using conventional techniques.

4 EARIC: The Proposed Attacks

4.1 Overview

In this section, we introduce EARIC – a scheme comprising the three attack techniques we
designed. As discussed in the preceding sections, we propose and develop new ADC attack tech-
niques by exploiting the registers used in the analog-to-digital conversion logic. To simplify the
presentation of our proposed attack techniques, it is essential to highlight how the ADC conver-
sion logic works and the relevant registers involved in the process. As discussed in section 2.1,
ADC converts the voltage value on the analog input pin and returns a digital value from 0
to 1023 (for a 10-bit wide ADC), relative to the reference value. The analog input channel is
selected using an analog multiplexer [18], and the input value is processed in ADC with a refer-
ence voltage for certain clock timings. When the analog-to-digital conversion is completed, the
output result (often called the "ADC output data") is stored in the two ADC data registers,
i.e., ADCH and ADCL (each 8-bit wide). More precisely, for a 10-bit ADC resolution, the ADC
output will be stored in the 9th to 0th bits of the ADCH and ADCL data registers (cf. Figure 8).
A typical schematic of ADC is illustrated in Figure 7. In Figure 7, ADC0 to ADC7 represents

5 https://github.com/loathingKernel/ariadne-bootloader

https://github.com/loathingKernel/ariadne-bootloader

8

Fig. 7: A high-level architecture of ADC with registers

the input pins for the analog input signals. The multiplexer (MUX) selects the input voltage
from the pins and transfers it to the registers.

As shown in Figure 7, several registers are involved in the ADC conversion logic. As high-
lighted in the preceding sections, these registers are vulnerable to attacks since its default values
(data or flags) can be manipulated by an attacker. This is because, there are no security mech-
anisms in place to protect these registers against such malevolent manipulations. In this work,
we exploit such weaknesses to perform three types of attacks on the ADC conversion logic. A
detailed account of the attacks is provided in the following section.

4.2 The Proposed Attacks

As mentioned in the preceding sections, we perform three types of attacks on ADC to scrutinize
exploitability of its registers. In particular, we perform the attacks by exploiting three of the

4. EARIC: THE PROPOSED ATTACKS 9

most critical ADC registers, such as ADMUX, ACSR, and the ADC data registers (i.e., ADCH
and ADCL). The attacks are tested using a mini-CPS testbed simulating an alarm system based
on an analog temperature sensor. In brief, the system triggers an alarm when the temperature
read is beyond a threshold. A detailed account of the testbed is provided in Section 5. Below,
we discuss each of the proposed attack techniques and its respective outcomes.

Deceiving the ADC conversion logic (Attack 1) With the first attack, we deceive the
ADC conversion logic by manipulating the ADMUX register. The ADMUX register is used to
select the reference voltage as well as to determine which analog input channel is to be chosen.
Furthermore, this register is used to determine whether the ADC output data should be left-
justified (i.e., the output data is to be read from the left-most bits) or right-justified (i.e., the
output data is to be read from right-most bits) with respect to the 16-bit ADC data registers
(i.e., ADCH + ADCL). As shown in Table 2, the ADMUX register comprises 8 bits. A high-level
discussion of the bits is provided as follows.
- REFS (Reference Selection Bits): REFS1 (Bit 7) and REFS0 (Bit 6) are reference selection
bits in ADMUX that are used to select the voltage reference for the ADC. The internal voltage
reference options may not be used if an external reference voltage is applied to the AREF pin.
- ADLAR (ADC Left Adjust Result): ADLAR (Bit 5) affects the presentation of the ADC output
data in the ADC data registers (refer Section 4.2). Depending on the value set to the ADLAR
bit, the ADC output data can be either right-justified (i.e., ADLAR = 0) or left-justified (i.e.,
ADLAR = 1) in the ADCH and ADCL data registers. The default mode is right-justified. The
left-justified mode is not supported by most microcontrollers, including the Arduino board we
used in our experimental setup (cf. Section 5).
- MUX3 (Multiplexer): MUX3 (Bit 0 to 3) are the analog channel selection bits that are used to
select the analog input channel (refer ADC0 to ADC7 in Figure 7). A detailed account of how
the analog channel selection bits work in ADC can be found in [28].

Attack synopsis: The default values of the ADMUX register bits are shown in Table 2.
That is, REFS1 is ‘1’, REFS0 is ‘1’, ADLAR is ‘0’, and MUX0 to MUX3 is ‘0’. As discussed
above, the value of ADLAR affects the presentation of the ADC output data in the ADCH and
ADCL data registers. By default, the ADC output data is right-justified (i.e., ADLAR = 0).
That means, the output data will be read from the 9th to 0th bits of the ADCH and ADCL
data registers (for a 10-bit ADC resolution). The ADCH and ADCL data presentation with
respect to the ADLAR value (i.e., ‘0’ or ‘1’) is illustrated in Figure 8. However, as shown in
Table 3, the ADLAR bit of the ADMUX register can be set to ‘1’ to reverse the ADC output
data presentation (i.e., left-justified). Meaning, the ADC output data will be read from the 15th

to 6th bits, where the 15th to 10th bits contain garbage (junk) data as shown in Figure 8. When
the digital device (e.g., the PLC in CPS) tries to read the ADC output data, it will be referred to
the garbage location, which returns an undesirable value (often a very high value). In practice,
this attack might be achieved in different ways. For example, it could be launched by sending a
malicious ADC command to the PLC at runtime or by systematically synthesising and injecting
a malicious code to the PLC firmware. In our case, we follow the latter. We inject the following
code into the Arduino firmware, which sets the ADLAR bit to ‘1’.

ADMUX | = (1 << 5);

After performing the above attack on our experimental setup, the ADC was forced to return
a temperature of 1588.13℃ from the analog temperature sensor even though the actual temper-
ature reading was 24.49℃. The output of this attack is depicted in Figure 9. This misleads the

10

PLC to issue and send a wrong control command (i.e., "ON" command) to the actuator, i.e.,
a siren alarm set in our experimental setup (refer Section 5). As a result, the siren alarm was
triggered even though the actual temperature was below the threshold. That means, the wrong
ADC read from the garbage location misleads the PLC to make a wrong control decision, which
in turn could cause a disaster or damage to the CPS plant.

In sum, the main aim of this attack is deceiving the ADC output data presentation on
the ADC data registers (i.e., ADCH and ADCL) by manipulating the ADLAR value on the
ADMUX register. Consequently, PLCs will be forced to read undesirable ADC output data,
hence misleading them to make wrong control decisions. A high-level architectural illustration
of this attack is provided in Figure 10. As shown in Figure 10, the attack is performed on the
ADLAR flag of the ADMUX register and, consequently, the ADCH and ADCL data registers
are impacted.

Table 2: ADMUX register bits with its default values
ADMUX

Bits
REFS1
(Bit 7)

REFS0
(Bit 6)

ADLAR
(Bit 5)

-
(Bit 4)

MUX3
(Bit 3)

MUX2
(Bit 2)

MUX1
(Bit 1)

MUX0
(Bit 0)

Read/
Write R/W R/W R/W R R/W R/W R/W R/W

Default
Values 1 1 0 0 0 0 0 0

Table 3: ADMUX register bits after manipulating the ADLAR bit
ADMUX

Bits
REFS1
(Bit 7)

REFS0
(Bit 6)

ADLAR
(Bit 5)

-
(Bit 4)

MUX3
(Bit 3)

MUX2
(Bit 2)

MUX1
(Bit 1)

MUX0
(Bit 0)

Read/
Write R/W R/W R/W R R/W R/W R/W R/W

Bit Values
(ADLAR = 1) 1 1 1 0 0 0 0 0

Creating a DoS attack on the ADC process (Attack 2) In this attack, we create a
denial of service (DoS) attack on the ADC conversion process by manipulating the ADC analog
comparator control and status register (ACSR). As discussed in Section 2.1, the ADC analog
comparator is an essential part of the ADC conversion process. It is managed and controlled by
the ACSR register. As depicted in Table 5, the ACSR register is represented by 8 bits comprising
Analog Comparator Interrupt Mode Select (ACIS0 and ACIS1), Analog Comparator Input
Capture Enable (ACIC), Analog Comparator Interrupt Enable (ACIE), Analog Comparator
Interrupt (ACI), Analog Comparator Output (ACO), Analog Comparator Band Gap (ACBG)
and Analog Comparator Disable (ACD). All the ACSR bits except bit 5 (which is read-only)
are readable and writable (R/W). The default value of these bits is ‘0’ except ACO, which is
not applicable (NA).

Attack synopsis: Each logical bit in the ACSR register plays different roles and function-
alities in the ADC conversion logic, depending on the logical value (i.e., ‘0’ or ‘1’) set to it. For

4. EARIC: THE PROPOSED ATTACKS 11

Fig. 8: ADC output data presentation in ADCH and ADCL registers with respect to the ADLAR
value
Note: "G" is for garbage data, "x" (from bit 9 to 0) represents the ADC output data values
in binary format, i.e., 0’s and 1’s. For example, Table 4 shows how a temperature reading of
24.49℃ is stored in the ADCH and ADCL data registers.

Fig. 9: Output of Attack 1

example, the analog comparator will be disabled if the logical bit ACD is set to ‘1’, the analog
comparator interruption will be enabled if the logical bit ACIE is set to ‘1’, etc. A detailed
information regarding the roles and functionalities of the ACSR bits in the ADC conversion
logic can be found in [28]. When we simultaneously set the ACD and ACIE bits to ‘1’ in the
ACSR register, the ADC conversion process will hang, hence leading to DoS attack. This will
render system unavailability, which is a critical concern in time-sensitive systems, such as CPS.
Our construction of Attack 2 (i.e., DoS attack) in the ADC conversion logic is formally captured
as follows:

DoS_Attack := (ACD == 1) ∧ (ACIE == 1)

In our experimental setup, we perform this attack by injecting the code "ACSR |=
0b10001000;" into the Arduino firmware. Here, the 4th bit (i.e., ACIE) and 8th bit (i.e., ACD) of
the ACSR register are set to ‘1’, which causes the system to hang (refer the red box in Figure 11.
The code snippet of the attack is also shown in Figure 11.

Resetting the ADC process (Attack 3) In this attack, we reset the ADC process by
manipulating the ADC data registers, such as ADCH and ADCL. As discussed in the preceding

12

Table 4: The ADC output data presentation in data registers

ADCH ADCL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

G G G G G G 0 0 0 1 0 0 1 1 0 0

Table 5: ACSR register bits
ACSR
Bits

ACD
(Bit 7)

ACBG
(Bit 6)

ACO
(Bit 5)

ACI
(Bit 4)

ACIE
(Bit 3)

ACIC
(Bit 2)

ACIS1
(Bit 1)

ACIS0
(Bit 0)

Read/
Write R/W R/W R R/W R/W R/W R/W R/W

Initial
Values 0 0 NA 0 0 0 0 0

sections, ADC has two 16-bit wide data registers, i.e., ADCH and ADCL. These registers are
used to store the ADC digital output obtained from the analog conversion. For example, Table 4
shows how our temperature sensor reading of 24.49℃ is stored in the ADC data registers. The
equation to translate the sensor reading temperature value to binary format and vice versa can
be referred in [1].

Attack synopsis: Like the other ADC registers, the ADC data registers (i.e., ADCH and
ADCL) can also be manipulated by an attacker. One way to manipulate these registers would
be by clearing the ADC outcome data stored in them. However, we cannot directly do that since
these registers are read-only. Meaning, we can only read the data stored in these registers, but
not modifying it. So, how can we achieve the attack on the ADC data registers? We discuss
details of our proposed attack technique as follows.

The ADC output data is read by the the "analogRead()" function – a function (often used
in Arduino) that reads the digital value from a specified analog pin. However, there are some
implicit tasks to be performed before reading the digital value. First, the analog value (e.g., the
voltage between 0 and 5V) from the analog pin will be converted to a digital value between 0 to
1023 (for a 10-bit long ADC). As discussed in the preceding sections, this digital value (i.e., the
ADC output) will be then stored in the ADCH and ADCL registers. Then, the "analogRead()"
function defines two variables, say "low" and "high", to read the ADC output from the ADCL
and ADCH data registers, respectively. That means, the "low" variable reads values from the
ADCL register and the "high" variable reads values from the ADCH register. The final ADC
output will be a combination of the two variables, i.e., low = ADCL && high = ADCH.
However, we can attack this logic by including a malicious script in the device’s (the Arduino
in our case) firmware, and particularly in the "analogRead()" function. Instead of assigning the
ADCL and ADCH register values to the "low" and "high" variables mentioned above, we can
maliciously assign ‘0’ to both. That means, we inject the "low = 0;" and "high = 0;" codes
to the source-code of the "analogRead()" function in the Arduino firmware. This might also be
done through system configuration. This leads the ADC output to be always ‘0’ instead of the
actual result. We tested this attack on our temperature reading setup. Even though the actual
temperature was 24.17℃, the temperature reading after launching the attack was always 0℃.
The outcome of this attack is shown in Figure 12. Therefore, this attack can also mislead the

5. EXPERIMENTAL DESIGN 13

Fig. 10: Attacking the ADMUX register

Fig. 11: The code snippet and output of Attack 2

control decision of PLCs in CPS. In a similar way, more critical and complex attacks can also
be performed on the ADC data registers.

5 Experimental Design

In this section, we present details of our experimental setup designed to test the proposed attack
techniques. Our experimental setup simulates a temperature-based alarm control system. In
brief, the system periodically reads the surrounding temperature, and it triggers an alarm when
the temperature value is above a threshold, say 30℃.

To simulate the above process, we design a mini-CPS testbed using IoT devices, sensors and
actuators. Specifically, we use Arduino MEGA6 as a soft PLC, which makes control decisions
6 https://store.arduino.cc/products/arduino-mega-2560-rev3

https://store.arduino.cc/products/arduino-mega-2560-rev3

14

Fig. 12: Output of Attack 3

based on the temperature readings of the sensor. We use an analog temperature sensor, called
LM357, to read the surrounding temperature and feed it to the PLC. We use an 8Ω mini speaker8
(a siren alarm) as an actuator, which activates the alarm when it receives an "ON" command
from the PLC. A high-level schemata of the experimental setup is depicted in Figure 13.

As shown in Figure 13, the analog temperature sensor (LM35) is connected to the Arduino
board (via the analog input A0) to read the surrounding temperature. The sensor is also con-
nected to the internal voltage reference 3.3V. The Arduino board has 16 analog input pins and
54 digital input/output pins. It also contains an inbuilt ADC and MCU. The inbuilt ADC (in-
tegrated in the same electrical circuit board with the MCU) converts the analog temperature
values to a discrete-time digital values. The MCU acts as a PLC and makes control decisions,
such as triggering the alarm, based on the digital temperature value obtained from the ADC.
More specifically, it issues an “ON” or “OFF” control command depending on the the tempera-
ture value and the threshold set. The “ON” control command triggers the alarm while the “OFF”
control command turns off the alarm. An 8Ω mini speaker (a siren alarm) is connected to the
Arduino board to act as an actuator. It activates the alarm when it receives an “ON” command
from the PLC, and it turns off the alarm otherwise.

Due to lack of access, we did not conduct our experiments on real-world CPS testbeds with
vendor-supplied PLCs. Yet, we believe that our experimental setup described above is substan-
tially sufficient to evaluate the effectiveness of the proposed attach techniques. This is because,
Arduino boards are nowadays widely used both in experimental and production settings. For ex-
ample, it is widely used in various IIoT, ICS and CPS systems. Hence, protecting such systems
against ADC-based attacks is also desirable. Moreover, the analog-to-digital conversion logic
and software/hardware design of most ADCs are very similar. Hence, the ADC architecture
(including its memory registers) of Arduino-based PLCs is highly likely to be similar with that
of real-world PLCs. Therefore, we expect that the presented ADC attacks will also be effective
when applied to real-world PLCs, which is left as a future work.

6 Evaluation and Discussion

In this section, we discuss a detailed evaluation of our proposed attacks. In brief, we evaluate
the proposed attack techniques along three dimensions: 1) Accuracy 2) Efficiency 3) Impact.
Furthermore, we discuss possible countermeasures to prevent such types of ADC attacks.

7 https://www.electronicwings.com/sensors-modules/lm35-temperature-sensor
8 https://circuit.rocks/mini-metal-speaker-w-wires-8-ohm-0-5w.html

https://www.electronicwings.com/sensors-modules/lm35-temperature-sensor
https://circuit.rocks/mini-metal-speaker-w-wires-8-ohm-0-5w.html

6. EVALUATION AND DISCUSSION 15

Fig. 13: Schematic diagram of the experimental setup

6.1 Attack Accuracy

There were no much significant internal or external factors that could influence our experimental
results. The only sensible factor or variable is the temperature environment. Hence, we conduct
the experiments in different temperature conditions, such as cold (< 16℃), mild (16℃ – 25℃)
and hot (> 25℃). In all such circumstances, the proposed attacks always produced the expected
results. Meaning, we have not observed any false positive or false negative results in all our
experiments. Therefore, the proposed attacks are very accurate in achieving the intended goal.

6.2 Attack Efficiency

The proposed attack techniques are simple to be launched. The attacks are performed by sys-
tematically manipulating the flag or data values of the targeted ADC registers. At runtime,
there was not any significant overhead observed, both in CPU and memory usage. It takes only
a few microseconds to conduct each of the three attacks. To experimentally show the execution
time of each attack, we performed 50 simulations for each attack. The experimental results are
depicted in Table 6. That means, the execution time of Attack 1 and Attack 3 are 60.2µ and
60.3µ, respectively. However, we could not measure the execution time of Attack 2 since the
system immediately hangs after this attack is performed. Therefore, outputs of the attacks are
almost instantaneous. Meaning, impacts of the attacks can be reflected in real-time – without
any significant delay.

16

Table 6: The average execution time of the attacks for 50 simulations

Attack 1 Attack 2 Attack 3

60.2µs
Not applicable since the system

hangs after the attack
60.3µs

6.3 Attack Impact

ADCs are commonly used in a wide-range of critical systems, such as ICS, CPS, and IoT, among
others. Hence, manipulating the ADC conversion logic may result in a catastrophic impact to
the systems. For example, the ADC outcome (i.e., the converted digital value) is a crucial input
to the PLC to make control decisions in CPS. If the ADC outcome is manipulated, it will mislead
the PLC to make wrong control decisions. This will result in incorrectly controlling the physical
process in CPS. Hence, the entire CPS system could be severely impacted, including destruction
of the physical plant.

Although the proposed attacks are tested on an Arduino-based soft PLC, we believe that
it can also be applied and tested on real-word CPS systems (please refer the discussion in
Section 5).

6.4 Proposed Countermeasures

As discussed in the preceding sections, attacking the analog-to-digital conversion process can
result a catastrophic impact on various systems and infrastructures. In particular, manipulating
the flags and data values of ADC registers is a critical stealthy attack that might not even be
easily detected. Therefore, it is essential to design appropriate countermeasures against these
attacks. In this work, we highlight possible countermeasures and research directions to overcome
such security concerns.

Enforcing write-protected policy to ADC registers As discussed, the register manipulation attacks
are carried out by overwriting the exiting data or flags of certain critical registers in ADC, such as
ADMUX, ACSR and the ADC data registers (ADCL and ADCH), among others. One possible
direction to address such attacks is by systematically enforcing a stringent "write-protected"
policy to critical ADC registers and other memory locations. Such measures may help to prohibit
an unauthorized writing or overwriting of ADC registers, hence preventing manipulation attacks
in ADC registers.

Authorizing and tracking firmware updates Properly authenticating and authorizing PLCs would
be another approach to prevent ADC-based attacks. To minimize attacks that inject malicious
ADC commands to the PLC firmware or control software, only authorized users should be
allowed to make such edits. A logging system should also be in place that tracks and traces all
authorized and unauthorized activities, including providing input to the system. The track and
trace system must clearly identify all software/firmware edits made or inputs provided to the
system.

7. RELATED WORK 17

7 Related work

In this section, we discuss the relevant prior works that are closely related to the security concerns
of ADC. In particular, we discuss prior attacks performed on the ADC conversion logic.

As discussed in the introduction, ADCs have been targeted by various types of attackers.
Attackers often target certain vulnerabilities that can be discovered in the hardware or software
of ADCs. Bolshev et al. [5] has conducted an extensive study both on the hardware and software
based vulnerabilities of ADCs. They then developed an attack technique by exploiting vulner-
abilities in the sampling frequency and dynamic range of the ADC conversion logic. There are
also side-channel attacks that exploited the strong correlation between the ADC digital output
codes and the ADC supply current waveforms [17]. If the power side-channel attack (PSA) of the
ADC is exploited, it can expose the private signal change data [16]. When applied to a successive
approximation register (SAR) without PSA protection, the power supply current waveforms of
the SAR are attacked. Other side-channel attacks have been also developed by exploiting various
vulnerabilities in ADC [26,27,20,29,12,4,10,14].

Other class of attacks have exploited fast attack automatic gain control (AGC) vulnerability
in ADC to deceive the outcome of the analog to digital conversion [3,16,19]. Some other attacks
exploited the DAC-to-DAC crosstalk vulnerability in the ADC conversion logic [31,22,36]. How-
ever, we are not aware of any existing attack techniques that exploit vulnerabilities related to
ADC registers.

In CPS, an attacker who has access to the PLCs can generate a signal with a frequency that
is interpreted as being valid by the ADC, when in reality it can cause serious damage to the
physical process [19]. In spite of ADCs having anti-aliasing filter that restricts the bandwidth
of a signal, these filters do not prevent frequency attacks.

Another ADC-related attack involves manipulating the device’s input and output (I/O) at
a low level, which allows the attacker to control the PLC without triggering any alarms [20].

System-on-Chip (SoC) integrators may design a Hardware Trojan with the intention of per-
turbing the ADC from malfunctioning by manipulating input or output signals or by affecting
the modulator’s output bit [36]. By applying the wrong version of the input signal instead of
original version of input signal in modulator sometimes, change to one third of the healthy
signal amplitude. The output signal also can be manipulated through noise signal making it
through inverted, attenuated or by doing both. A maliciously sized static random-access mem-
ory (SRAM) cell can be controlled locally or globally to supply inversed output bits from the
modulator to the digital filter block at any time by controlling the supply voltage of its cell.
Also, the output signal can be manipulated by triggering capacitance by including trojan circuit
to change the structure and size of the components based on the attacker restrictions. Another
stealthy hardware trojan attack was also recently launched on the analog integrated circuits
(ICs) of ADCs [11]. However, all these attacks did not specifically target the ADC registers.

Memory corruption attacks are another common threats against IoT devices or PLCs in
ICS/CPS. They typically exploit memory-safety vulnerabilities, such as buffer overflows and
dangling pointers, that could be found in the software or firmware of the devices to corrupt the
process memory or execution flow of programs at runtime [13,8,7]. However, these attacks target
the runtime process memory of the devices, not specifically the ADC memory registers.

In summary, there are several types of ADC-related attacks presented in the literature. To
the best of our knowledge, non of them specifically target ADC registers. In this work, we identify
and exploit certain ADC registers used in the analog-to-digital conversion process, which appear
to be the unexplored attack surfaces in ADC.

18

8 Conclusion

ADCs are integral components in most critical systems, such as IoT and control systems. How-
ever, ADCs have been targeted by a wide range of physical or cyber attacks. The attackers may
exploit various types of vulnerabilities that could be found in the software or hardware of ADCs.
In this work, we first conducted a more in-depth study of the ADC conversion logic to discover
relevant ADC vulnerabilities that were not well explored by previous work. Consequently, we
managed to find relevant vulnerabilities on ADC registers. To demonstrate its exploitability, we
developed three types of ADC attacks and tested it in an IoT-based mini-CPS environment.

By manipulating the ADC registers, we showed that it is possible to deceive the ADC
outcome or maliciously halt the analog-to-digital conversion process. The ADC process can
be forced to return an output that is much different from the expected result. This is carried
out by changing the flag in the ADC multiplexer selection register, called ADMUX. An attack
can also be carried out by manipulating the analog comparator control and status registers,
called ACSR. We managed to maliciously hang the ADC conversion process by simultaneously
enabling the ACD (analog comparator disable) and ACIE (analog comparator input enable) bits
of the ACSR register, which resulted in system unavailability. We also showed that the ADC
conversion process can be rendered useless by setting its output values to zero. This is achieved
by resetting the data reader when it reads the ADC output from the ADCH and ADCL data
registers. This was an attempt to show that ADC registers can most definitely be manipulated
if no underlying protection mechanism is set for the ADC conversion process.

In the future, we plan to extend our experiments on real-world CPS testbeds using vendor-
supplied PLCs. We also intend to conduct additional research to further explore key ADC
vulnerabilities. Proposing and developing appropriate countermeasures for register-based ADC
attacks is also left as a future work.

Acknowledgment

The work is partially supported by A*STAR under its RIE2020 Advanced Manufacturing and
Engineering (AME) Industry Alignment Fund - Pre Positioning (IAF-PP) Award A19D6a0053.
Any opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not reflect the views of A*STAR.

References

1. adafruit.com/: Using a temp sensor (2022), online, available at https://learn.adafruit.com/
tmp36-temperature-sensor/using-a-temp-sensor

2. Alphonsus, E.R., Abdullah, M.O.: A review on the applications of programmable logic
controllers (plcs). Renewable and Sustainable Energy Reviews 60, 1185–1205 (2016).
https://doi.org/https://doi.org/10.1016/j.rser.2016.01.025, https://www.sciencedirect.com/
science/article/pii/S1364032116000551

3. analog.com: Ad9364 register map reference manual (2021), white Paper, available at
https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_
map_reference_manual_ug-672.pdf

4. Ashok, M., Levine, E.V., Chandrakasan, A.P.: Randomized switching sar (rs-sar) adc protections
for power and electromagnetic side channel security. In: 2022 IEEE Custom Integrated Circuits
Conference (CICC). pp. 1–2 (2022). https://doi.org/10.1109/CICC53496.2022.9772837

https://learn.adafruit.com/tmp36-temperature-sensor/using-a-temp-sensor
https://learn.adafruit.com/tmp36-temperature-sensor/using-a-temp-sensor
https://doi.org/https://doi.org/10.1016/j.rser.2016.01.025
https://www.sciencedirect.com/science/article/pii/S1364032116000551
https://www.sciencedirect.com/science/article/pii/S1364032116000551
https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf
https://www.analog.com/media/cn/technical-documentation/user-guides/ad9364_register_map_reference_manual_ug-672.pdf
https://doi.org/10.1109/CICC53496.2022.9772837

8. CONCLUSION 19

5. Bolshev, A., Larsen, J., Krotofil, M., Wightman, R.: A rising tide: Design exploits in industrial
control systems. In: 10th USENIX Workshop on Offensive Technologies (WOOT 16). USENIX As-
sociation, Austin, TX (Aug 2016), https://www.usenix.org/conference/woot16/workshop-program/
presentation/bolshev

6. Chekole, E.G., Castellanos, J.H., Ochoa, M., Yau, D.K.Y.: Enforcing memory safety in cyber-
physical systems. In: Katsikas S. et al. (eds) Computer Security. SECPRE 2017, CyberICPS 2017
(2017), https://doi.org/10.1007/978-3-319-72817-9_9

7. Chekole, E.G., Chattopadhyay, S., Ochoa, M., Huaqun, G.: Enforcing full-stack memory safety
in cyber-physical systems. In: Proceedings of the International Symposium on Engineering Secure
Software and Systems (ESSoS’18) (2018), https://doi.org/10.1007/978-3-319-94496-8_2

8. Chekole, E.G., Chattopadhyay, S., Ochoa, M., Guo, H., Cheramangalath, U.: Cima: Compiler-
enforced resilience against memory safety attacks in cyber-physical systems. Computers & Secu-
rity 94, 101832 (2020). https://doi.org/https://doi.org/10.1016/j.cose.2020.101832, https://www.
sciencedirect.com/science/article/pii/S0167404820301061

9. Chekole, E.G., Huaqun, G.: Ics-sea: Formally modeling the conflicting design constraints in
ics. In: Proceedings of the Fifth Annual Industrial Control System Security (ICSS) Work-
shop. p. 60–69. ICSS, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3372318.3372325, https://doi.org/10.1145/3372318.3372325

10. Chen, R., Wang, H., Chandrakasan, A., Lee, H.S.: Ram-sar: A low energy and area overhead,
11.3fj/conv.-step 12b 25ms/s secure random-mapping sar adc with power and em side-channel
attack resilience. In: 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and
Circuits). pp. 94–95 (2022). https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830365

11. Elshamy, M., Di Natale, G., Pavlidis, A., Louërat, M.M., Stratigopoulos, H.G.: Hardware trojan
attacks in analog/mixed-signal ics via the test access mechanism. In: 2020 IEEE European Test
Symposium (ETS). pp. 1–6 (2020). https://doi.org/10.1109/ETS48528.2020.9131560

12. Gattu, N., Imtiaz Khan, M.N., De, A., Ghosh, S.: Power side channel attack analysis and detection.
In: 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD). pp. 1–7 (2020)

13. Geng, Y., Chen, Y., Ma, R., Wei, Q., Pan, J., Wang, J., Cheng, P., Wang, Q.: Defending cyber-
physical systems through reverse engineering based memory sanity check. IEEE Internet of Things
Journal pp. 1–1 (2022). https://doi.org/10.1109/JIOT.2022.3200127

14. Gnad, D.R.E., Krautter, J., Tahoori, M.B.: Leaky noise: New side-channel attack vectors in mixed-
signal iot devices. IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(3),
305–339 (May 2019). https://doi.org/10.13154/tches.v2019.i3.305-339, https://tches.iacr.org/index.
php/TCHES/article/view/8297

15. Grami, A.: Chapter 5 - analog-to-digital conversion. In: Grami, A. (ed.) Intro-
duction to Digital Communications, pp. 217–264. Academic Press, Boston (2016).
https://doi.org/https://doi.org/10.1016/B978-0-12-407682-2.00005-3, https://www.sciencedirect.
com/science/article/pii/B9780124076822000053

16. Jeong, T.: Secure analog-to-digital conversion against power side-channel attack (May 2020), online,
available at https://dspace.mit.edu/handle/1721.1/127018

17. Jeong, T., Chandrakasan, A.P., Lee, H.S.: S2adc: A 12-bit, 1.25ms/s secure sar adc with power side-
channel attack resistance. In: 2020 IEEE Custom Integrated Circuits Conference (CICC). pp. 1–4
(2020). https://doi.org/10.1109/CICC48029.2020.9075919

18. Jogdand, R.R., Dakhole, P.K., Palsodkar, P.: Low power flash adc using multiplexer based encoder.
In: 2017 International Conference on Innovations in Information, Embedded and Communication
Systems (ICIIECS). pp. 1–5 (2017). https://doi.org/10.1109/ICIIECS.2017.8276157

19. Kovacs, E.: Adc attacks can cause damage in industrial environments (Nov 2016), online, available
at https://www.securityweek.com/adc-attacks-can-cause-damage-industrial-environments

20. Kovacs, E.: Plcs vulnerable to stealthy pin control attacks (Nov 2016), online, available at https:
//www.securityweek.com/plcs-vulnerable-stealthy-pin-control-attacks

21. Lab, M.: Analog to digital converter – how adc works and types? (2017), online, available at https:
//microcontrollerslab.com/analog-to-digital-adc-converter-working/

https://www.usenix.org/conference/woot16/workshop-program/presentation/bolshev
https://www.usenix.org/conference/woot16/workshop-program/presentation/bolshev
https://doi.org/10.1007/978-3-319-72817-9_9
https://doi.org/10.1007/978-3-319-94496-8_2
https://doi.org/https://doi.org/10.1016/j.cose.2020.101832
https://www.sciencedirect.com/science/article/pii/S0167404820301061
https://www.sciencedirect.com/science/article/pii/S0167404820301061
https://doi.org/10.1145/3372318.3372325
https://doi.org/10.1145/3372318.3372325
https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830365
https://doi.org/10.1109/ETS48528.2020.9131560
https://doi.org/10.1109/JIOT.2022.3200127
https://doi.org/10.13154/tches.v2019.i3.305-339
https://tches.iacr.org/index.php/TCHES/article/view/8297
https://tches.iacr.org/index.php/TCHES/article/view/8297
https://doi.org/https://doi.org/10.1016/B978-0-12-407682-2.00005-3
https://www.sciencedirect.com/science/article/pii/B9780124076822000053
https://www.sciencedirect.com/science/article/pii/B9780124076822000053
https://dspace.mit.edu/handle/1721.1/127018
https://doi.org/10.1109/CICC48029.2020.9075919
https://doi.org/10.1109/ICIIECS.2017.8276157
https://www.securityweek.com/adc-attacks-can-cause-damage-industrial-environments
https://www.securityweek.com/plcs-vulnerable-stealthy-pin-control-attacks
https://www.securityweek.com/plcs-vulnerable-stealthy-pin-control-attacks
https://microcontrollerslab.com/analog-to-digital-adc-converter-working/
https://microcontrollerslab.com/analog-to-digital-adc-converter-working/

20

22. Langmann, R., Stiller, M.: The plc as a smart service in industry 4.0 production systems. Applied
Sciences 9(18) (2019), https://www.mdpi.com/2076-3417/9/18/3815

23. Le, B., Rondeau, T., Reed, J., Bostian, C.: Analog-to-digital converters. IEEE Signal Processing
Magazine 22(6), 69–77 (2005). https://doi.org/10.1109/MSP.2005.1550190

24. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008 11th IEEE International Sympo-
sium on Object and Component-Oriented Real-Time Distributed Computing (ISORC). pp. 363–369
(2008). https://doi.org/10.1109/ISORC.2008.25

25. Li, P., Yi, X., Liu, X., Zhao, D., Zhao, Y., Wang, Y.: All-optical analog comparator. Scientific
Reports 6 (08 2016). https://doi.org/10.1038/srep31903

26. Miki, T., Miura, N., Sonoda, H., Mizuta, K., Nagata, M.: A random interrupt dithering sar technique
for secure adc against reference-charge side-channel attack. IEEE Transactions on Circuits and
Systems II: Express Briefs 67(1), 14–18 (2020). https://doi.org/10.1109/TCSII.2019.2901534

27. Miki, T., Nagata, M.: Countermeasures against physical security attacks on ICs utilizing on-
chip wideband ADCs. Japanese Journal of Applied Physics 61(SC), SC0803 (Mar 2022).
https://doi.org/10.35848/1347-4065/ac4823, https://doi.org/10.35848/1347-4065/ac4823

28. Mitescu, M., Susnea, I.: Interfacing to analog signals. Microcontrollers in Practice pp. 93–106 (2005)
29. Munny, R., Hu, J.: Power side-channel attack detection through battery impedance monitor-

ing. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS). pp. 1–5 (2021).
https://doi.org/10.1109/ISCAS51556.2021.9401542

30. Mynbaev, D.K., Scheiner, L.L.: Analog Signals and Analog Transmission, pp. 103–201 (2020).
https://doi.org/10.1002/9781119521501.ch2

31. docs.rs online.com: 8-channel, 12-bit, configurable adc/dac with on-chip reference, i2c interface
(2014), online, available at https://docs.rs-online.com/1e6a/0900766b813daba4.pdf

32. Prathiba, G., Santhi, M., Ahilan, A.: Design and implementation of reliable flash
adc for microwave applications. Microelectronics Reliability 88-90, 91–97 (2018).
https://doi.org/https://doi.org/10.1016/j.microrel.2018.07.095, https://www.sciencedirect.com/
science/article/pii/S0026271418306577, 29th European Symposium on Reliability of Electron
Devices, Failure Physics and Analysis (ESREF 2018)

33. Satoh, T., Takahashi, K., Matsui, H., Itoh, K., Konishi, T.: 10-gs/s 5-bit real-time optical quantiza-
tion for photonic analog-to-digital conversion. IEEE Photonics Technology Letters 24(10), 830–832
(2012). https://doi.org/10.1109/LPT.2012.2188503

34. Stouffer, K., Falco, J., Scarfone, K., et al.: Guide to industrial control systems (ics) security. NIST
special publication 800(82), 16–16 (2011)

35. Taheri, S., Lin, J., Yuan, J.S.: Security interrogation and defense for sar analog to digital con-
verter. Electronics 6(2) (2017). https://doi.org/10.3390/electronics6020048, https://www.mdpi.
com/2079-9292/6/2/48

36. Taheri, S., Yuan, J.S.: Mixed-signal hardware security: Attacks and countermeasures for δ
∑

adc.
Electronics 6(3) (2017), https://www.mdpi.com/2079-9292/6/3/60

37. Wadatsumi, T., Miki, T., Nagata, M.: A dual-mode successive approximation register analog to
digital converter to detect malicious off-chip power noise measurement attacks. Japanese Journal of
Applied Physics 60(SB), SBBL03 (feb 2021). https://doi.org/10.35848/1347-4065/abde26, https:
//doi.org/10.35848/1347-4065/abde26

38. Yadav, G., Paul, K.: Architecture and security of scada systems: A review. International Journal of
Critical Infrastructure Protection 34, 100433 (2021)

39. Zanero, S.: Cyber-physical systems. Computer 50(4), 14–16 (2017).
https://doi.org/10.1109/MC.2017.105

https://www.mdpi.com/2076-3417/9/18/3815
https://doi.org/10.1109/MSP.2005.1550190
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1038/srep31903
https://doi.org/10.1109/TCSII.2019.2901534
https://doi.org/10.35848/1347-4065/ac4823
https://doi.org/10.35848/1347-4065/ac4823
https://doi.org/10.1109/ISCAS51556.2021.9401542
https://doi.org/10.1002/9781119521501.ch2
https://docs.rs-online.com/1e6a/0900766b813daba4.pdf
https://doi.org/https://doi.org/10.1016/j.microrel.2018.07.095
https://www.sciencedirect.com/science/article/pii/S0026271418306577
https://www.sciencedirect.com/science/article/pii/S0026271418306577
https://doi.org/10.1109/LPT.2012.2188503
https://doi.org/10.3390/electronics6020048
https://www.mdpi.com/2079-9292/6/2/48
https://www.mdpi.com/2079-9292/6/2/48
https://www.mdpi.com/2079-9292/6/3/60
https://doi.org/10.35848/1347-4065/abde26
https://doi.org/10.35848/1347-4065/abde26
https://doi.org/10.35848/1347-4065/abde26
https://doi.org/10.1109/MC.2017.105

	EARIC: Exploiting ADC Registers in IoT and Control Systems

